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Abstract

We study numerical approximations of the reactive Euler equations of gas dynamic. In
addition to shock, contact and rarefaction waves, these equations admit detonation waves
appearing at the interface between different fractions of the reacting species. It is well-known
that in order to resolve the reaction zone numerically, one has to take both space and time
stepsizes to be proportional to the reaction time, which may cause the numerical method
to become very computationally expensive or even impractical when the reaction is fast.
Therefore, it is necessary to develop underresolved numerical methods, which are capable
of accurately predicting locations of the detonation waves without resolving their detailed
structure. One can distinguish between two different degrees of stiffness. In the stiff case,
the reaction time is very small, while in the extremely stiff case, the reaction is assumed to
occur instantaneously.

In [A. KUurGANOV, in Hyperbolic problems: theory, numerics, applications, Springer,
Berlin, 2003], we proposed a simple underresolved method—an accurate deterministic pro-
jection (ADP) method—for one-dimensional hyperbolic systems with stiff source terms in-
cluding the reactive Euler equations in the extremely stiff regime. In this paper, we extend
the ADP method to the (non-extremely) stiff case, multispecies detonation models, and the
two-dimensional reactive Euler equations in all of the aforementioned regimes. We also inves-
tigate ways to distinguish between different regimes in practice as well as study the limitations
of the proposed ADP methods with respect to the ignition temperature. We demonstrate the
accuracy and robustness of the ADP methods in a number of numerical experiments with
both relatively low and large ignition temperature, and illustrate the difficulties one may face
when the ignition temperature is low.
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1 Introduction

We study numerical methods for hyperbolic systems of balance laws with very stiff source terms.
In the two-dimensional (2-D) case, such systems read as

U, + F(U), + G(U), = S(U, ), (1.1)

where, U is an unknown function of space variables z and y and a time variable ¢, F' and G are
given flux functions and S is a source term, which depends on the stiffness parameter 0 < ¢ < 1.
In particular, we consider an inviscid, compressible, reacting flow, governed by the reactive Euler
equations, which, in the single reaction case, have the following form:

p pu pU 0

pU pu? +p puv 0

pv | + pUv + | p?+p | = 0 (1.2)
E u(E +p) v(E + p) 0

pz) puz N pvz . —pzK (158, 7,)

Here, the dependent variables p, u, v, E and z are the density, z- and y-velocities, total energy and
the fraction of unburnt gas, respectively. The system is completed through the following equation

of state (EOS):
p

p=(y—1) E—E(Z—I—UQ)—qopz , (1.3)
where the parameters v and gy represent the specific heat ratio and chemical heat release, respec-
tively. On the right-hand side (RHS) of (1.2), 7 := p/p is the temperature. Finally, the reaction
can be modeled by either the Arrhenius kinetic term,

1
K(rie,m) = —e ™/, (1.4)
£

where 7. is the ignition temperature and ¢ is the reaction time, or even stiffer Heaviside kinetic
term [33]:

1
- it 7>,
E

K(r;e,7.) = éH(T —Te) = (1.5)

0, otherwise.

The system (1.2)—(1.3) with the kinetic term K(7;e,7.) given by either (1.4) or (1.5) is a
hyperbolic system of balance laws whose solutions contain shock, contact and rarefaction waves.
In addition, in the studied stiff regimes, it also admits detonation waves appearing at the interface
between the burnt and unburnt fractions of the gas. It is well-known that in order to resolve the
reaction zone numerically, one has to take both spatial (Ax, Ay) and temporal (At) stepsizes to
be proportional to the reaction time e, which may cause the numerical method to become very
computationally expensive or even impractical when the reaction is fast, that is, when Az /e > 1,
Ay/e > 1 and At/e > 1. Therefore, it is necessary to develop underresolved numerical methods,
which are capable of accurately predicting locations of the detonation waves without resolving
their detailed structure. One can distinguish between two different degrees of stiffness. In the
stiff case (¢ < 0), the reaction time is very small, while in the extremely stiff regime (¢ — 0), the
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reaction is assumed to occur instantaneously. In the latter case, the reaction can only be modeled
by the stiffer Heaviside kinetic term (1.5).

Designing an accurate underresolved numerical method for the general system (1.1) with a very
small £ (or, in particular, for the reactive Euler system in either stiff or extremely stiff regime)
is a rather challenging task. Since the system is stiff, it is natural that one may wish to use an
operator splitting (fractional step) method; see, e.g., [23,24]. The latter can be implemented by
considering the following two subsystems:

U +FU),+GU),=0 (1.6)

and
U =SU,e). (1.7)

Then, assuming that U (z,t) is available at time ¢, an approximate solution at the next time level
t + At is given by
U(z,y,t + At) = Sp(At) S (AU (. y, 1),

where Sz and Sp denote the solution operators for the subsystems (1.6) and (1.7), respectively.

The hyperbolic system of conservation laws (1.6) can be solved by any (stable and suffi-
ciently accurate) shock-capturing method. In this paper, we use the second-order central-upwind
scheme briefly described in Appendix A. Central-upwind schemes are Riemann-problem-solver-
free Godunov-type schemes for general multidimensional hyperbolic systems of conservation laws.
These schemes were first proposed in [20] and then further developed in [17-19,21].

The step of solving the ODE (1.7) requires a special attention. In the extremely stiff case, the
solution operator Sp reduces to the projection of the computed solution onto an equilibrium state:

U+ PU, (1.8)

where S(PU ,¢) = 0. In a less stiff case, one has to solve the ODE (1.7) with a very small, but yet
finite £. Though this solution may be very close to the projected one given by (1.8), the difference
between the stiff and extremely stiff cases is sometimes significant, especially in the multispecies
case considered in §4.

Even though the operator splitting method is very simple, it has a major drawback: If the
deterministic projection operator described in §2.1 is used in (1.8), this approach may lead to
a spurious weak detonation wave that travels with a nonphysical propagation speed (the same
phenomena will be observed if the ODE (1.7) is solved in the case of a very small €). This oc-
curs since shock-capturing methods smear discontinuities, and as soon as the nonphysical value
of the temperature in this numerical layer is above the ignition temperature, a certain part of
the gas may get numerically burnt prematurely. This peculiar numerical phenomenon was first
observed in [8,9], and since then it has attracted lots of attention. It was found in [22] that the
propagation error is mainly due to numerical dissipation, and in order to tackle this numerical
problem, it was reduced in, e.g., [37]. In [6,7,26,34], front-tracking approaches were used to ob-
tain the correct propagation of the reactive front. Since numerical dissipation cannot be generally
avoided, alternative approaches that focus on establishing accurate temperatures from the arti-
ficially diffused solutions have been proposed: the ignition temperature was artificially increased
in [5], corrected [12,28], or replaced using random projection methods [2,3,30]. Numerical meth-
ods using overlapping grids and block-structured adaptive mesh refinement for high-speed reactive
flow in complex geometries were proposed in [13,14]. In [31,32,35], the ENO subcell approach
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was utilized to design high-order finite-difference methods. In [36], the threshold values method,
which is based on the physically motivated detonation wave velocities correction, was proposed.
We refer the reader to [4,30,31,35-37] for the extensions of some of the aforementioned numerical
methods to the case of multispecies detonation.

A simple and robust alternative to the aforementioned approaches was proposed in [16], where
an accurate deterministic projection (ADP) method for one-dimensional (1-D) hyperbolic systems
with extremely stiff source terms was introduced. The key idea of the ADP method for the reactive
Euler equations can be described as follows. In order to avoid numerical smearing of the profile
of z, we only solve the equations for the density, momentum and energy at the hydrodynamics
substep Sz. The values of z are then evolved in time only during the projection substep Sp, at
which the pressure (and hence the temperature) is computed using the EOS, at which the values
of z from the previous time level are used; see the details presented in the 2-D case in §2.2.

In this paper, we generalize the ADP method developed in [16] for the 1-D extremely stiff
reactive Euler equations to the 2-D case and to the following settings. First, in §3, we consider the
single reaction case in the non- extremely stiff regime with either Arrhenius (1.4) or Heaviside (1.5)
kinetic terms and replace the projection operator (1.8) with the a trapezoidal-like ODE solver.
We then consider in §4 the multispecies detonation, for which we either directly extend the ADP
solution operator (in the extremely stiff regime; §4.1) or develop a special ADP-based ODE solver
(in the non-extremely stiff regime; §4.2). These extensions are carried out in both the 1-D and 2-D
cases. The developed ADP methods are tested on a number of numerical examples, presented in
§2.3, §3.1 and §4.3 at the end of each section after the corresponding version of the ADP method is
presented. In the conducted numerical experiments, we compare the obtained numerical solutions
with the corresponding reference solutions computed by a fully resolved central-upwind scheme,
and outline ways how to distinguish between different regimes in practice. In addition, we study
the limitations of the ADP methods with respect to the ignition temperature 7, and demonstrate
the accuracy and robustness of the proposed ADP method in a number of numerical experiments
with relatively large 7.. We also illustrate the difficulties one may face when 7. is low.

2 Deterministic Projection Method: Extremely Stiff Case

In this section, we describe two deterministic projection approaches for solving the reactive Euler
equations (1.2)—(1.3), (1.5) in an extremely stiff regime.

2.1 “Standard” Deterministic Projection (SDP) Method

We begin with a “standard” deterministic projection (SDP) approach. For simplicity, we consider
a rectangular computational domain covered by a uniform spatial mesh consisting of the cells Cj
centered at (z;,yx) := (jAz, kAy) and assume that the computed solution is realized in terms of

1
= XAy Jo  U(z,y,1") dydz, and available at time level ¢ = ¢". In order
TAy 79,

to evolve the solution to the next time level according to the aforementioned operator splitting
approach, we first use a (stable and accurate) shock-capturing method to numerically solve the

. >N
its cell averages, U
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homogeneous system arising at the hydrodynamics substep (1.6):

p pu pv 0
pu pu? +p puv 0
pv | + puv + | p?+p | =101, (2.1)
E u(E +p) v(E +p) 0
rz), puz N puz Y 0

completed through the EOS (1.3). Here, we prefer to work with finite-volume methods (in partic-
ular, with the central-upwind scheme described in Appendix A), but would like to stress that the
considered computational framework is general and may be used in conjunction with one’s favorite
shock-capturing method. The cell averages p]",jl, (pw)itt, (po)5it, E]n ,j ! and (p2)} at the new
time level £"* := " 4 At are then used to obtain u?;' = (pu)if'/pitt, vt = (pv)ﬁfl/pf;l,

= (p2);,/ p ' and to define

—n+1
n n+1 Pk n n n
B = O - DB = 2 (2 + @) - wri] (2:2)

and
n+1
n+1(2’) _ Pj (2 )

—n+1
j?k

(2.3)

Notice that for the (,ﬁ);“k and 27, the upper index is not n+1 yet as they are going to be changed
after the projection step (1.8), at which we obtain the values of z and pz at time level ¢ = ¢"*1:

n+l _ —=n+1 n+1
(pz)]k p]k jk )

bl _ 0, if Tn,jl(Z]’ ) > T,
gik 1, if T"+1(z v) < Te

and then calculate p"+1( ]n;rl) using (2.2) with z = ZﬁH

This “standard” determlmstic projection method is very simple, but as mentioned in §1 it may
lead to spurious, nonphysical detonation waves traveling with artificial speeds, which makes the
“standard” deterministic projection method impractical. Utilizing the ADP method presented in
the next section allows one to avoid such an undesirable situation.

2.2 Accurate Deterministic Projection (ADP) Method

The main reason of the failure of the SDP method is that it uses nonphysical, artificial values
of (p_z);kk obtained after the fluid dynamics substep S3 of the operator splitting method. The
simplest way to prevent this undesirable situation is not to solve the (pz)-equation at the fluid
dynamics step at all. We thus modify the deterministic projection method as follows.

Once again, we assume that cell averages of the solution at time level t = ¢" (including the
values of the fraction of unburnt gas 2}, = (p2)},/p;%) has been already computed. We first
evolve them in time by applying a (stable and accurate) shock-capturing finite-volume method to
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the homogeneous system that contains only the first four equations of the system (2.1):

p pU pu 0
u u? + uw 0
o N A 7], (2.4)
pv pUV pu- +p 0
E). u(E + p) N v(E+p) 0

completed through the EOS (1.3). As before, the evolved cell averages pt"", (pu)if, (p0)7)!

j7k ) ]7k
—nt1 _ . :
and F Jn,: (but not (pz)j,, which is not computed now at all) are used to obtain u}le, vﬁrl and
pyzl(z?k) using (2.2) with z = 2J;. Notice that compared with the SDP method, the pressure

p;.‘;l is now computed using the value of z from the previous time level, which is one of the crucial
points in the ADP method.
The projection step is then performed as in the case of the SDP method, but with T”*l(ziﬁk)

VLA
: n+1 n
replaced with 777 (27;), namely, we set

bl _ 0, if T]”,jl(z;”k) > 7., 2.5)
= . )
/ 1, if Tj",jl(z;‘k) < T,

where ngl(z;lk) is computed using (2.2), (2.3) with 2 = 27,.

Upon the completion of the projection step (2.5), we calculate pf'f'(2f!) using (2.2) with

_ .n+1
z = Zj,k .

2.3 Numerical Examples

In this section, we demonstrate the performance of the proposed ADP method and compare it
with the SDP method on four 2-D numerical examples. For the 1-D numerical examples, we refer
the reader to [16].

In the first three examples, we take the CFL number 0.5 (the time step At is determined
adaptively by using the CFL condition for the homogeneous systems (2.4) and (2.1) for the ADP
and SDP methods, respectively), while in the fourth example we use a smaller CFL number 0.25
to avoid small oscillations appearing when a larger time step is used.

In all of the examples considered in this section, the reaction is assumed to occur instanta-
neously, that is, ¢ ~ 0, and thus the value of ¢ does not need to be specified as it is not used
in the direct projection (2.5). It should be observed that one can, in principle, set a very small
value of € and replace the direct projection (2.5) with solving the corresponding ODE (1.7). This,
however, leads to almost identical results and therefore in the extremely stiff case we always use
a simpler approach based on the direct projection. In §4.3, we will also demonstrate that the stiff
case reduces to the extremely stiff case when ¢ — 0.

Example 1—Detonation Wave in a Channel

We consider the initial-boundary value problem taken from [2]. The initial data,

(pluuhouplao)a if xgg(y)a

(p(z,y,0),u(z,y,0),v(z,y,0), p(x,9,0), 2(x,9,0)) —{ (oot 0 pn. 1), i 7> €(y),
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where
£(y) 0.004, if |y —0.0025| > 0.001,
y _—
0.005 — |y — 0.0025|, if |y —0.0025| < 0.001,

are given in a 2-D channel [0,0.025] x [0,0.005] with the solid wall boundary conditions at the
upper and lower boundaries and free boundary conditions on the left and on the right. We take
the following parameter values: v = 1.4, gy = 5.196 x 10° and 7, = 1.155 x 10°, and the initial
values: p; = 1.945 x 1073, p; = 6.27 x 10°%, u; = 8.162 x 10%, p, = 1.201 x 1073, p, = 8.321 x 10°
and u, = 0, which are the same as in [2].

One important feature of this solution is that the triple points travel in the transverse direction
and bounce back and forth against the upper and lower walls, forming a cellular pattern.

We compute the solutions by using both the ADP and SDP methods on a uniform spatial
mesh with Az = Ay = 5 x 107°. In Figure 2.1, we show the density computed at four different
times using the ADP (top row) and SDP (bottom row) methods. The ADP results are in good
agreement with the results reported in [2], while the SDP solution develops a wave traveling with
a nonphysical speed. This can also be clearly seen in Figure 2.2, where we show the propagation
of the interface between the burnt and unburnt fractions of the gas, computed by the two studied
methods.

Example 2—Radial Detonation Wave

In the second example taken from [3], we consider the initial setting, which corresponds to a
circular detonation front and consists of totally burnt gas inside a semi-circle with radius 10
and totally unburnt gas outside the semi-circle and the radially symmetric initial velocities. The
radially symmetric initial data are

(pinauin(xay)vvin(ajvy)7pina0>7 if r S 107
Ju,v,p, 2)(x,y,0) = r =22+ 192,
(pyu,v,p, 2)(,9,0) { (1,0,0,1,1), if > 10, Y

where py, = 21.53134, pi, = 1.79463, ui,(z,y) = 10z/r, and v, (z,y) = 10y/r. The parameters
are chosen as v = 1.2, go = 50 and 7, = 2.

We take the computational domain [—50,50] x [0,50] and use a uniform spatial mesh with
Ax = Ay = 1. The solid wall boundary conditions are used along the bottom part of the domain,
while the free boundary conditions are implemented at the other parts of the boundary. We have
solved the problem numerically by both the ADP and SDP methods and the obtained results are
reported in Figures 2.3 and 2.4.

In Figure 2.3, we plot the temperature component of the computed solution at times ¢ = 0.25,
1 and 3. As one can see, the ADP and SDP temperatures are totally different even at a smaller
time ¢ = 0.25. The source of this difference can be understood by looking at the propagation
of the interface between the burnt and unburnt fractions of the gas shown in Figure 2.4. As the
ADP solution is in a good agreement with the solution reported in [3], we conclude that the fast
wave developed by the SDP solution is a numerical artifact that can be prevented by using the
proposed ADP.
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Figure 2.1: Example 1: Density p computed by the ADP (top row) and SDP (bottom row) methods.
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Figure 2.2: Example 1: Time evolution of the fraction of unburnt gas = computed by the ADP (top
row) and SDP (bottom row) methods. In both figures, the detonation wave propagates from left to
right and the interface between the burnt and unburnt fractions of the gas is shown at times ¢t = 0,
1078,5-107%,9-10% and 1.7- 1077,
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Figure 2.3: Example 2: Temperature 7 computed by the ADP (left column) and SDP (right column)
methods.

Example 3—Interaction of Gas Dynamics and Detonation Waves

In the third example, we study the collision of a radially symmetric stiff detonation wave with
a shock, contact discontinuity and rarefaction wave. This problem is an extension of the 1-D
experiment conducted in [3,15,16]. We consider the following initial data:

(4,0,0,10,0), if x> 40,
(p,u,v,p, 2)(x,y,0) = < (3.64282,10 cos 0, 10sin 0, 54.8244,0), if /2% + y2 < 10,
(170707 17 1)7 OtheI'WiSG,

where tanf = y/x and use the following parameters: v = 1.2, go = 50 and 7. = 3. We take the
computational domain [—30, 100] x [—30, 30], on which we implement free boundary conditions,
and use a uniform spatial mesh with Az = Ay = 1/2.

The results (temperature and fraction of unburnt gas) obtained by the ADP and SDP methods
at times t = 0.25, 1, 3, 4 and 5 are reported in Figures 2.5 and 2.6. As one can observe, both
methods provide similar approximations at small times ¢ = 0.25 and 1 (before the collision). At
a later time ¢ = 3 (after the collision with the shock, but before the collision with the rarefaction
wave), the solutions start exhibiting a different behavior due to the fact that the detonation wave
produced by the SDP method starts moving with an nonphysical speed; this is similar to the 1-D
case studied in [16]. Finally, at times ¢ = 4 and 5 (after all the collisions), the detonation wave
front computed by the SDP method keeps moving to the right with the increasing nonphysical
speed. At the same time, the ADP method seems to produce accurate results.
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Figure 2.4: Example 2: Fraction of unburnt gas z (shaded in red) computed by the ADP (left column)
and SDP (right column) methods.

Example 4—Diffraction of a Detonation Wave

In the last example of this section, we consider a detonation wave in the domain [—1,0] x [0, 1] U
0, 3] x [—1, 1] with the solid walls along the top part of the boundary and along the following line
segments: {—1 <z <0,y=0} {xr=0,-1<y <0}and {0 <z <3, y=—1}, and the open
boundaries on the left and on the right. The initial data are

(3.64282, 6.2489, 0, 54.8244, 0), if = < —0.5,

(oyu,0,p,2)(#,3,0) {Oﬂﬁ@ﬁ% if > —0.5,
and the parameters are the same as in Example 2: v = 1.2, ¢y = 50 and 7, = 2. The initial setting
is outlined in Figure 2.7.

In this example, the detonation wave initially positioned vertically at x = —0.5, first propagates
to the right and then diffracts around a solid corner. We compute the solution at times ¢t = 0.2
and 0.4 on a uniform spatial grid with Az = Ay = 1/100 using both the ADP and SDP methods.
The results are shown in Figures 2.8 and 2.9, where we plot the temperature and the fraction of
unburnt gas fields. As one can clearly see, an artificially fast wave generated by the SDP method
after the diffraction, is prevented by the use of the proposed ADP procedure.
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Figure 2.5: Example 3: Temperature 7 computed by the ADP (left column) and SDP (right column)
methods.

3 Accurate Deterministic Projection Method: Stiff Case

We now consider a stiff, but not extremely stiff regime. In this case, instead of performing a direct
projection (1.8) one has to numerically solve the stiff ODE (1.7) at the projection substep Sp.

To do so, we first note that the last equation of the system (1.2) can be combined with the
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Figure 2.6: Example 3: Fraction of unburnt gas z (shaded in red) computed by the ADP (left column)

and SDP (right column) methods.

density equation and then recast in the nonconservative form as

2+ uzy +vzy = —2K(156,70),

where K (7;¢,7.) is given by either (1.4) or (1.5). Therefore, at the projection substep Sp, we will
have to solve the following stiff ODEs at every cell center (x;, y):

d
dt

_Zj,k - _Zj,kK(T;‘?];H (2)7 g, Tc)a S [tn> tn+l)' (31)
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Figure 2.7: Example 4: Domain and the initial wave location.
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Figure 2.8: Example 4: Temperature 7 (top row) and fraction of unburnt gas z (bottom row) at time
t = 0.2 computed by the ADP (left column) and SDP (right column) methods.

We note that the RHS of (3.1) is prescribed upon the completion of the hydrodynamic substep Sy
and thus it depends on T]’-?,jl (z), which is defined in (2.2), (2.3) and according to the ADP approach,
remains constant on the time interval [t", t"™!) as we do not update z until the projection substep
Sp is completed. Therefore, K (T]",j Y(2); E,TC) also remains constant, that is, K (T;l,j Y(2)se, Tc) =

K (75 (z2); e, ) for ¢ € [t",¢"F1), and we can solve the ODE (3.1) exactly to obtain

it = Apexp { ALK (T ()56 7e) }

where T;l,jl(zjnk) is calculated using (2.2), (2.3) with 2z = 2.
Remark 3.1 We note that in the SDP method, K(T;.?,;H(z); £,7.) is not constant for t € [t",t"*1)
as we update z during the hydrodynamics substep Sy . Therefore, in order to design the SDP
method, we develop a proper ODE solver for (3.1). To this end, we first rewrite it in terms of an
auziliary variable w = In z,

wy = =K (171(2); 6, 70), (3.2)
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Tatt=04 Tatt=0.4

4 05 0 0.5 1 15 2 25 3 4 05 0 0.5 1 15 2 2.5 3
zatt=04 z att=04

0.8
106
-04

0.2

Figure 2.9: Example 4: Same as in Figure 2.8, but at time ¢ = 0.4.

and then apply the trapezoidal method to equation (3.2) and implement it in an explicit form using
the predictor-corrector approach. This results in
At

wz;:l = wj) — > [K(Tf,jl(z;k), g, TC) + K(T;f,jl(,%]??gl); g, Tc)i| ,

where 71)]”,;|r 1= ln(,%]??,j 1) is the value predicted by the forward Euler method, namely,
Wi =)y — ALK (T (2)5 €, 7).

After the backward substitution z = €, we obtain the following trapezoidal-like ODE method to
compute ZJ”;CH

At
2= 2 exp {—— [K(Tf,jl(z;k), e,7e) + K(T (N )se, TC)] }

2
with
F = 2 exp (ALK (1 (250056 7) }

where T;L,jl(z;‘k) and Tﬁgl(éjf,jl) are calculated using (2.2) and (2.3) with z = z5, and z = 2]7?,?1,

respectively.

3.1 Numerical Examples

In this section, we present three numerical experiments, in which we consider stiff, but not ex-
tremely stiff, 1-D and 2-D problems with the Arrhenius kinetic term (1.4). Notice that the 2-D
ADP method proposed in §3 can be reduced to the 1-D case in a straightforward way. In all of
the examples, the CFL number is set to 0.3.
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Example 5—1-D Detonation Waves

We first consider the 1-D example taken from [28,32,37]. The initial conditions, which correspond
to a burnt gas on the left and unburnt gas on the right, are given by

(p,u,p, 2)(,0) =

(1.6812, 2.8867, 21.5672, 0), if = < 10,
(1,0,1,1), if x> 10,

and the parameters are chosen as v = 1.4, qo = 25, 1/e = 16418 and 7. = 15. We take the
computational domain [0,30] and use a uniform spatial mesh with Az = 1/10. The density,
pressure, temperature and fraction of unburnt gas, computed by both the ADP and SDP methods
at t = 1.5, are presented in Figure 3.1 together with the reference solution obtained on a uniform
spatial mesh with Az = 3/4000. It is important to point out that the reference solution cannot
be computed with Az = 1/200 as the unsplit central-upwind scheme must be fully resolved
(otherwise, it will suffer from the same drawback as the SDP method, that is, the computed
detonation wave speed will become nonphysical). As one can see, the proposed ADP method
captures the detonation wave propagating with the correct speed, while the detonation wave
computed by the SDP method moves faster. Also note that our results are in good agreement
with those reported in [37, Example 4.1].

P p
25¢
30+
25+
2  E——
20 *
D—-_M 15+ *
151 * S—
& 10+
—————— ADP . ~~ ADP
+ SDP e, Sf|+-sppP |
1|——Reference o | |——Reference e —
0 5 10 15 20 25 30 0 5 10 15 20 25 30
T y4
14 1 F{me ADP |
[P e
", — -+ SDP i
by e 0.8 | |—Reference ‘ ]
10 ;
06"
81 |
6 04+
4[[-—ADP | 02}
ol |+ sDP j
——Reference ‘ 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 3.1: Example 5: Density (p), pressure (p), temperature (7) and mass fraction (z) computed by
the ADP and SDP methods.
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Example 6—2-D Detonation Waves

We now consider the 2-D example taken from [37], and take the initial conditions similar to those
in Example 2, but put into the radially symmetric setting:

(Pins Uin (2, Y), Vin (T, Y), pin, 0), if 7 <2,
(p,u,v,p,2)(z,y,0) = { :

(1,0,0,1,1), if r>2,
where r = /22 + 4%, pm = 21.53134, pi, = 1.79463, win(x,y) = 10z/r and v, (z,y) = 10y/r.
The parameters are v = 1.4, go = 30, 1/e = 20000 and 7. = 15. The computational domain is
[—10,10] x [0,10] and we use a uniform mesh with Az = Ay = 1/10. We compute the solution
using both the ADP and SDP methods until the final time ¢ = 1 and present the obtained density,
pressure, temperature and fraction of unburnt gas along the y = x 1-D cross-section in Figure 3.2.
Unfortunately, no reference solution can be computed in the 2-D case as a fully resolved unsplit
central-upwind scheme is computationally unaffordable. In order to verify that the ADP solution
converges to the physically relevant one, we also plot the ADP and SDP solutions computed using
a finer mesh with Az = Ay = 1/40. As one can see, the position of the detonation wave in the
obtained ADP solutions is about the same, which suggests that the ADP method captures the
detonation wave propagating with the correct speed. We would also like to point out that our
results are similar to those reported in [37, Example 4.4].

P p
21 [%"Coarse mesh SDP 30 [ |--+-- Coarse mesh SDP
-~ Coarse mesh ADP --o--Coarse mesh ADP

1.6 |- Fine mesh SDP 25 |-k Fine mesh SDP
Fine mesh ADP al

Fine mesh ADP

20

15] e
10 = ]
0 ) W
0 2 4 6 8 10
T z
--+---Coarse mesh SDP 1 ||~ Coarse mesh SDP —
80 o-- Coarse mesh ADP o Coarse mesh ADP ;
rrrrrr Fine mesh SDP 0.8 | |-~ Fine mesh SDP ;
——Fine mesh ADP ——Fine mesh ADP
06"
0.4+
) 0.2+
0 ‘L: 0
0 2 4 6 8 10 0 2 4 6 8 10

Figure 3.2: Example 6: 1-D cross-sections along the y = x of the density (p), pressure (p), temperature
(1) and mass fraction (z) computed by the ADP and SDP methods using the coarse mesh with
Az = Ay = 1/10 and a finer mesh with Az = Ay = 1/40.
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Example 7—Diffraction of Detonation Waves

In this example designed in the spirit of the numerical experiments conducted in [1], we consider
several stiff detonation waves satisfying the same following initial data:

(3.64282, 6.2489, 0, 54.8244,), if x < —0.5,

p,u,v,p)(z,y,0) =
( ) ) { (1,0,0,1), if > —0.5.

The parameters v = 1.2 and ¢y = 50 are fixed, but the values of £ and 7. are varied to model
different regimes.

The initial setting is similar to the one used in Example 4 and it is outlined in Figure 3.3. The
computational domain is [—1,0] x [0,2] U [0, 3] x [—=2, 2] and the solid walls boundary conditions
are imposed along the top part of the boundary and along the following three line segments:
{-1<2<0,y=0} {x=0,-2<y <0}, and {0 <z <3,y =—2}, while the left and right
boundaries are open.

-1 0 1 2 3

Figure 3.3: Example 7: Domain and the initial wave location.

We compute the solutions for six different combinations of parameters € and 7. on a uniform
spatial grid with Az = Ay = 1/100. As in Example 4, the detonation waves initially situated
vertically at x = —0.5, first travel to the right, and then diffract around a solid corner. The
solutions obtained using the proposed ADP method at the final time ¢ = 0.4 are presented in
Figure 3.4. As in [1], we plot schlieren images of the magnitude of the density gradient field |V p.
To this end, we have used the following shading function:

30|Vl )

Ve (‘ max(1V )

where the numerical density derivatives are computed using standard central differencing. As one
can see from this figure, the solution structure dramatically changes when the reaction time is
reduced and the ignition temperature increases. It is clear that small solution structures studied
in [1] cannot be fully reproduced in underresolved simulations, but the main solution features can
be captured by the ADP method.

4 ADP Methods for Multispecies Detonation

In this section, we extend the ADP methods described in §2.2 and §3 to the multispecies detona-
tion; see, e.g., [4,30,31,35-37].
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1 1/e =2x10%, 7, = 13 1 1/e =2 x10°%, 7, = 24
0 0
/ )
4 -1 /
!
2 -2
0 1 2 3 0 1 2 3
1/e =2 x 104, 7. = 20 1/e =2 x 104, 7, = 35

3

Figure 3.4: Example 7: Schlieren images of the magnitude of the density gradient field |V p| computed
by the ADP method for different values of £ and ..

The governing equations now read as (1.1) with

p pu pU 0
pu pu? +p PUV 0
pU PU pv:+p 0
U= E |, FU)=|uFE+p) |, GU)=|v(E+p) |, S(U,e) = 0 , (4.1)
Pz puz pUZ1 S1(U, )

pPEN-1 pUZN_1 PUZN_1 Syv-1(U,€)
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and they are completed with the following EOS:

p=(y—1) [E (u® + v? Z qlpz,} : (4.2)
and the algebraic relation
N
> =1z (4.3)
i=1
In (4.1)-(4.3), z == (21,...,2y) " and q := (qi,...,qy)" are the mass fractions and heat releases
of the N chemical species, respectively, z.,; is the total mass fraction of the catalysts, € :=
(€1,...,eum)" are the parameters representing the reaction times of M reactions, and
M N Pz,
S;(U,e) =W, — ) K (7580, 7 (—])ﬂ, 1=1,...,N—1. 4.4
? ; zE zZ 4 f) E VV] ( )

Here, W, is the molecular weight of the i-th chemical species, v}, and v}, are the stoichiometric
coefficients for the i-th species appearing as a product and a reactant in the (-th reaction, 7 is
the parameter representing the ignition temperature for the ¢-th reaction, and K (7;e,, 74) is either
the Arrhenius,
K(t;e0,m) = ie_”/T,
€

or Heaviside,

1
1 —, if 7>,
K(r;ep,m) = —H(T — 1) = { €0 (4.5)

€ .
¢ 0, otherwise,

kinetic term.

Example. To cite an example, we consider a reacting model consisting of N = 4 species and
M = 2 reactions. Prototype reactions for such model are

H, + OQ — 2()1‘17 20H + Hy — ZHQO, (46)

with 71 < 75 and Ny being a catalyst. In this case, v); = vy, =1, v3; = vy, V1, =1, v35 = 2,
— _ 1 _ " _ iz _ /i _ _ " _

Vyo = Vyo = 0,05, =2, 0v]) = vy, =0, =0, vy =2, 0]y =5, = v3, =0, and thus formula

(4.4) reads as

s ] ke () (42) - K () ()]
Sy = Wg_—K(T;El,T1)<pWZi> (%)}, (4.7)
Sy =Wjs :2K(7’;€1,7'1)<%> (%) — 2K (T; 52,7‘2)<€;1> (%)2],

where z1, 25, and z3 are the mass fractions of hydrogen (Hs), oxygen (O3), and hydroxide (OH),
respectively, and the corresponding molecular weights are Wy = 2, Wy = 32, and W5 = 17.
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Finally, z.. is the constant mass fraction of the nitrogen (N3), which is the catalyst, and the
mass fractions of water (Hy0) is obtained directly from (4.3):

™N

4 =1—21— 20— Z3 — Zcat- (48>

For the simplicity of presentation, in the remaining part of §4, we restrict our consideration to
the reactions presented in the above example.

4.1 Extremely Stiff Case

We begin with the extremely stiff case, in which the multispecies extension of the ADP method
is quite straightforward. As before, the time evolution of the computed solution from time t = t"
to t = t"! consists of two splitting substeps. We first solve the system (2.4) to obtain the cell

averages pj”,jl, (pu);l;gl, (pv)?’;l and E;?,;H and use them and the EOS (4.2) to obtain uﬁgl, UZZI,
piit(z),) and 7 (27,), where
s
n Rkl k n " n
B = (- | B = B (g o) - Zqu] ] (4.9)
and )
n Pik
Tjj;l (Z) j—nT (410)
Pik

We then generalize the ADP operator (2.5) to the multispecies case as follows:

AT if T]",jl(z;fk) > T,
()it =9 2T, i > >n, i=1,2,3. (4.11)
AT if T]",jl( 2}) <,

Here, 217 2IT and 2T are the mass fractions of the i-th chemical species in the low, intermediate

and high temperature regimes, respectively. We note that when the temperature is lower than 7,
no reactions occur, while when the temperature is higher than 75, then both reactions have been
completed. The value of z/7 depends on the quantities of the reactants in the mixture. For the
sake of brevity, we will only consider the case in which there is more hydrogen than oxygen, that

is, 2ET > W Y1 2LT . The values of the mass fractions 2/ are then given by
1% 2W
IT _ LT 1 LT IT r_ 23 AT
2t =2 — 290, 2y =0, 23 = .
1 1 W, 2 2 3 Wy
Finally, we note that (z )”Zl = (z5 )Ok as the mass fraction of a catalyst remains constant during

the entire reaction process, and (z );‘}gl =1- (zﬁ%ﬂ (22)72‘1 (23);‘;:1 — (25)7;1 from (4.3).

4.2 Stiff Case

In order to complete the derivation of the ADP method in the stiff case, we need to develop an
ODE solver for the system of ODEs

1
(Zi>t: *S“ Zil,,N—l, <412>
P
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with S; given by (4.7) (or (4.4) in the general case). This system is supposed to be solved upon
the completion of the hydrodynamic substep Sy.
Equations (4.12) can be simplified as follows. First, it can be easily verified that
2Ws 4Ws
<23 ) = O,
t

21— 2

W Wy
which implies that the quantity

c:=z3+ %Wf’zl — %22 (4.13)
is independent of time. Therefore, z3 can be obtained from (4.13) and substituted into (4.12) so
that at the projection step Sp we will only need to solve a 2 x 2 system of ODEs consisting of the
first two equations of (4.12) prescribed at every cell center (z;,yx). We then divide the first two
equations of (4.12) by z; and zy, respectively, introduce w; := In z; and wy := In 25, and obtain
the system

d d
&(UJl)j,k = Rl(zj,k)a &(WQ)j,k = R2(Zj,k)> le [tn> tn+1)> (4-14)
with
—n+1 —n+1 2 50+l
o (z2)jk o (23) .k pin (21)ik
Rl(Zij) = — KljJCVV—J + K2 (MVV—] N RQ(szg) = —Klj’kvv—], (415)
2 3 1
2W. 4W.
(23)jk = — Wf(»zl)j,k + Wj(@)gpm (4.16)

where K := K(T}?ﬁl(z;fk);el,Tl) and Ky = K(T;;1<Z§fk);€2,7'2) are constants for ¢ € [t"T! ")

since in the ADP approach we compute the temperature based on the values of z from the time
level t = ¢™, and T;L,jl(zyk) is calculated using (4.9), (4.10) with z = 27,.

We solve the ODE system (4.14)—(4.16) in a predictor-corrector manner. First, we predict the
solution at time t = ¢"*! using the forward Euler method, which in terms of z; = e*! and z, = e*2
reads as

(21)?;1 = (21)7) exp {AtRl(z;fk)} , (22);1;?1 = (22)} exp {Ath(zJ’fk)} . (4.17)
The values of z3 are then updated using (4.13):

n 2Ws aWws
(23)3‘,]:—1 = Cjk — Wl(zl)j,ljl Wz(ZQ)j,;_l7

where the time-independent quantities c;, are given by

4Ws

Wl(zl)?’k W, (22)?,k, (4.18)

Cik = (Z3);‘),k +

the values of z, are obtained from (4.8):
() =1— G = G = G = G)pH,

and the values of z5 remain unchanged, namely, (25)]";1 = (25) 7
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The computed values (21)”2rl and (22)7751 are then updated with the help of a trapezoidal
corrector, once again applied to the ODEs (4.14)—(4.16) and then written in terms of z; = ! and
z9 = €%2 as

5! = e { 5 (R0 + Az},
Gt = eesn {5 [Reta) + Razp)]

Finally, the new values of z3 are obtained using (4.13):

(4.19)

Wy, ur . AW

n+1
Wl(zl)j,k Wz( )

(28)1h" = cj — 2)jk

where ¢;;, are given in (4.18), the new values of z4 are obtained from (4.8):
(2t = 1= (2)50" — ()50 — ()it — ()7
and the values of z5 remain unchanged, namely, (z5)7"t" = (25)7,.

Remark 4.1 We note that in the SDP method, neither K (T ”+1( );e1,m) nor K (1 "+1( ); €2, T2)
is constant fort € [t"T1 t") as we update z during the hydrodynamic substep Sy . Therefore, when
the SDP method is implemented, Ry and Ry in (4.15) are replaced with

. —n+1 %) —n+1 22) s 2
Ry (zj,k) = — |:K(7_;’12-1(Z); el Tl)p] k I/g/;)J,k I K(T;-?;;H (z); £, 7_2) <p] k ‘;/33)“@) :| ’
—n+1
= n P (21)ik
RQ(ZJ"]C) = —K<Tj72_1(2); 61,7'1)—J’k e ! s
1

and (4.17) and (4.19) become

Gt = Gjeexp {AtRI(2,) b, (G5 = (2)exp { AtRa(z),) }

and At
3! = e { 5 (Rl + R .
Gt = Gl { 5 (Rt + Rz},
respectively.

4.3 Numerical Examples

In order to illustrate the performance of the ADP methods for multispecies detonation, we conduct
several numerical experiments in both 1-D and 2-D cases. As in §3.1, the 2-D ADP methods
proposed in §4.1 and §4.2 can be reduced to their corresponding 1-D versions in a straightforward
manner. In all of the numerical examples below, the Heavised kinetic term (4.5) is used and the
CFL value is chosen to be 0.3, except for Example 8a, where a smaller CFL value of 0.1 is used
to reduce the numerical oscillations.
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Example 8—One Reaction

We begin with a multispecies case with one reaction
CH4 + 202 — COQ + 2HQO,

also studied in [4]. Here, M =1, N =4, W, = 16, Wy, = 32, W3 =44, Wy =18, v}, = 1, vy | = 2,
vy, =0,v5, =0,v{; =0,0v5;, =0, v3; =1 and vy, = 2, and formula (4.4) reads as

1 11
S1 = _@K(T§51,7’1)(P21)(Pz’2)27 Sy =451, S3= _ZSM (4.20)
where z;, i = 1,2,3,4 are the mass fractions of methane (CHy), oxygen (Oz), carbon dioxide

(COy), and water (HyO), respectively. Note that it is unnecessary to compute the source term
Sy, since z4 can be obtained directly from (4.3) and it is equal to z4 = 1 — 23 — 25 — 23. We note
that in the stiff case considered in Examples 8b and 8c, one only needs to compute S; since (4.20)
immediately implies that (z2); —4(z1); = 0 and (23); + 3 (21); = 0. In Examples 8a-8c, we use the
same parameters as in [4]: v =1.4,¢ =0, qg3 =0, g4 =0, 17 = 2 and ¢; = 500 (in Examples 8a
and 8b) or ¢; = 100 (in Example 8c).

Example 8a—1-D Extremely Stiff Case

We begin with a 1-D extremely stiff case. The initial data are given by

(2, 10, 40, 0, 0.2, 0.475, 0.325), if = < 2.5,
(p7uap7 2'1,2’2,23,24)(17,0) = . (421)
(1,0,1,0.1, 0.6, 0.2, 0.1), if ©>25.
In this example, we use the following ADP operator:
HT —f prtl(pn)y >
(ytt=¢ % 0 0T 1(;7) =T 2123, (4.22)
7Tt (2)) <,

with 2{" = 0, 2{T = 0.1, 2’7 = 0.2, 237 = 0.6, 25" = 0475, 47 = 0.2, and (z4)]"" =

1—(20)0"" = (22)5"" — (23)7"". Here, (-)"*" denotes the value of the corresponding variable in the
1-D cell C; at time level ¢ = t"*!. We compute the numerical solution using both the ADP and
SDP methods on the domain [0, 50] using uniform meshes with Az = 1/4 and Az = 1/16 until
the final time ¢ = 3. The numerical results (density, pressure, temperature and mass fractions of
CHy) are presented in Figure 4.1. As one can observe, the solution consists of a detonation wave
followed by a contact discontinuity and a shock, and they all seem to be accurately captured by
the ADP method as the ADP results are in good agreement with those reported in [4, Example

5.3], while the solution computed by the SDP method is incorrect.

Example 8b—1-D Stiff Case

We now turn our attention to the stiff case, in which we numerically integrate the ODE for z;
(using the ODE solver similar to the one described in §4.2) instead of applying the ADP operator
(4.22). We use the same initial conditions (4.21) as in Example 8a.
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Figure 4.1: Example 8a: Density (p), pressure (p), temperature (7) and mass fraction of CHy (z;)
computed by the ADP and SDP methods using the coarse mesh with Az = 1/4 and a finer mesh with
Az = 1/16.

We first take the value 1/g; = 2 x 10° used in [4] and compute the solutions by both ADP
and SDP methods on the domain [0,50] using a uniform mesh with Az = 1/4 until the final
time t = 3. The obtained results (density, pressure, temperature and mass fraction of CHy) are
presented in Figure 4.2 along with the reference solution, which is computed by the fully resolved
unsplit central-upwind scheme using a very fine uniform mesh with Az = 1/100. As one can see,
both the ADP and SDP results are in good agreement with the reference solution computed on a
mesh, which is sufficient to resolve the detonation wave structure—mnot only its accurate location.
We also note that the unsplit central-upwind scheme fails to capture accurate detonation wave
dynamics when Az 2 1/10. However, the unsplit method still can be used in this case without
being extremely inefficient. Therefore, we conclude that the value 1/g; = 2 x 10° corresponds to
a stiff, but not extremely stiff case.

We then take the 10 times larger value of 1/e; = 2 x 105, repeat the same computations,
and plot the obtained results in Figure 4.3. This time, the ADP and SDP solutions have been
computed on the same uniform mesh with Az = 1/4, but the fully resolved reference solution is
obtained on a much finer (compared with the 1/e; = 2 x 10° case) mesh with Az = 1/1000. Once
again, the ADP is capable of exactly capturing the propagation of the detonation wave, while
the SDP method fails. We also notice that in this case the unsplit central-upwind scheme fails if
Az > 1/100, which brings us to the conclude that the value 1/e; = 2 x 10° seems to correspond
to the extremely stiff regime. In order to verify this, we plot,in Figure 4.3, the obtained solutions
along with the extremely stiff ADP solution computed using the ADP operator (4.22), that is,
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Figure 4.2: Example 8b: Density (p), pressure (p), temperature (7) and mass fraction of CHy (z;)
computed by the ADP and SDP methods for 1/, = 2 x 10°.

the ADP solution obtained in Example 8a. As one can see, the two ADP solutions are almost
the same. This suggests that the extremely stiff case can be accurately treated using the stiff
approach, that is, by using the ODE solver rather than the direct projection.

Example 8c—2-D Case

We now consider the 2-D case with the radially symmetric initial data

(2, uin(z, y), vin(x, y),40,0,0.2,0.475,0.325), if r <10,
(p,u,v,p, 2172272372;4)(-T7y70) = .

(1,0,0,1,0.1,0.6,0.2,0.1), if > 10,
where 7 = /22 4+ y?, upn(x,y) = 10z/r and v, (z,y) = 10y/r. As in Example 8a, the ADP
operator is given by

(z)7 = i=1,2,3

)
n+1

HT ¢ _n+l
% it 7 > 7,
LT

, b 7]
with 2T = 0, 2f" = 0.1, 27 = 0.2, 27 = 06, 24" = 0475, 247 = 0.2, and (z);' =
1— (20)0f = (=)7h" — (23)}1". We solve this problem on the domain [0,50] x [0,50] using a
uniform mesh with Az = Ay = 1/4. Solid wall boundary conditions are imposed along x = 0 and
y = 0, while the free boundary conditions are used along the other parts of the boundary.

We consider both the extremely stiff (1/e; = 2 x 10°) and stiff (1/e; = 2 x 10°) and compute
the numerical solutions by the extremely stiff and stiff ADP methods, respectively. Figure 4.4
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Figure 4.3: Example 8b: Density (p), pressure (p), temperature (7) and mass fraction of CHy (z;)
computed by the stiff and extremely stiff ADP methods and the stiff SDP method for 1/e; = 2 x 10°.

shows the pressure, temperature and mass fraction of CHy (we plot 100z, rather then z; for a
better visualization) along the line y = =, > 0 at times ¢ = 1, 2, 4 and 6. As one can see, the
extremely stiff and stiff results are almost the same and they are in good agreement with those
reported in [4, Example 5.5]. We note that in this example, the SDP method yields quite accurate
results (very close to those shown in Figure 4.4), which are omitted for the sake of brevity.

Example 9—Two Reactions

In this example taken from [4,36], we simulate the two reaction—five species model (4.1)—(4.2)
for the reactions (4.6). The details of the model as well as the corresponding ADP methods are
described and studied in §4. In Examples 9a-9d, we use the following parameters: v = 1.4, ¢; = 0,
g2 =0, g4 = —100, g5 = 0. Other parameters vary and will be specified in each particular example.

Example 9a—1-D Extremely Stiff Case

We begin with the 1-D extremely stiff case studied subject to the following Riemann initial data

also used in [4, Example 5.4]:
( (2, 0) (2, 10, 40, 0, 0, 0.17, 0.63, 0.2), if = < 2.5,
y Uy Py 215 225 23, 245 2 x, —

In this example, we set g3 = —20 and use the 1-D version of the ADP operator (4.11) with 27 = 0,

AT =0.035, 2F7 = 0.08, 2587 =0, 27 =0, 207 = 0.72, 287 = 0.17, 2i7 = 0.765 and 2zIT = 0. We
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Figure 4.4: Example 8c: Pressure (p), temperature (7) and 100 times of mass fraction of CH, (100z;)

computed by the ADP method at different times.

first compute the numerical solution with 73 = 2 and 75 = 10 (which were used in [4, Example 5.4])
by both the ADP and SDP methods in the computational domain [0, 50] using a uniform mesh
with Az = 1/4 until the final time ¢ = 3. The numerical results (density, pressure, temperature
and mass fractions of Hy) are presented in Figure 4.5. As one can observe, the results computed
by the ADP and SDP methods are practically the same and are in good agreement with those
reported in [4, Example 5.4], except that the density and temperature fields plotted in [4, Figure
4] are smeared (this causes the pressure graph to be nonflat in the area x € [20,30]) compared
with much sharper jumps in p and 7 and flat p around x € [20, 30]; seen in Figure 4.5.

We then consider a more challenging, smaller values of the ignition temperature and take
71 = 1.5 and 5 = 2. We compute the numerical solutions by both the ADP and SDP methods
and present the numerical results in Figure 4.6. As one can see, the obtained results are now very
different. In order to verify whether the proposed ADP method captures the detonation wave
propagating with the correct speed, we compute the reference solution computed using the unsplit
central-upwind scheme for the fast, but finite reaction time with 1/e; = 1/e5 = 10°. The reference
solution is computed using Ax = 1/1000, and as it agrees well with the ADP solution, we conclude
that the ADP solution is capable of accurately capturing the correct detonation wave speed, while
the SDP method fails.
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Figure 4.5: Example 9a: Density (p), pressure (p), temperature (7) and mass fraction of Hy (z;)
computed by the ADP and SDP methods for 71 = 2 and 7, = 10.

Example 9b—1-D Stiff Case

Next, we study the 1-D stiff case using an example similar to the one considered in [36]. We take
the following Riemann initial data:

(2, 10, 40, 0, 0, 0.17, 0.63, 0.2), if = < 0.5,

(b, 14,p: 21, 22, 23, 24, 75) (7, 0) { (1,0,1, 0.08, 0.72, 0,0, 0.2),  if = > 0.5,

and set g3 = —100. We first compute the solution with 7; = 75 = 1.5 and 1/, = 1/e5 = 10° (which
were used in [36]) until the final time ¢ = 0.06 by both the ADP and SDP methods on the domain
0, 2] using a uniform mesh with Az = 1/150. The obtained results (pressure, temperature, mass
fractions of Hy and OH) are plotted in Figure 4.7 together with the reference solution computed
by the unsplit central-upwind scheme with a much finer uniform spatial mesh with Az = 1/5000.
It should be observed that the reference solution can be, in principle, computed on a coarser grid,
but the use of any mesh size Az 2 1/400 will lead to inaccurate solution. This suggests that this
case is stiff but not very stiff. As can be clearly seen, the SDP methods fails to capture the correct
speed of the detonation wave, while the ADP method shows a good agreement with the reference
solution; see also the numerical solution reported in [36, Example 5.3]. At the same time, one can
observe that the mass fractions of Hy and OH have small jumps at x = 0.5, which is the breaking
point in the initial data, and also their values are quite inaccurate in the post detonation wave
area, which is at x € [0.8,1.3]. We believe that this is attributed to the fact that the ignition
temperatures are quite low in this example.
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Figure 4.6: Example 9a: Same as in Figure 4.5, but for 7, = 1.5 and 7, = 2.

While the above results may be considered satisfactory (recall that the aim of this paper is to
develop an underresolved method capable of exactly capturing the speed of the detonation wave),
the gain in the efficiency is rather small as this particular set of data corresponds to a not very stiff
case. We therefore investigate the behavior of the ADP method for the same set of the ignition
temperatures, that is, 71 = 7 = 1.5, but 10 times larger 1/e; = 1/e5 = 10°. We then compute the
ADP solution at the same final time ¢t = 0.06 using the same coarse grid as before (Ax = 1/150)
and plot it in Figure 4.8 along with the reference solution computed with Az = 1/10000. As one
can see, the ADP method fails. We then refine the mesh to Az = 1/600 and observe that in this
case, the ADP method produces accurate results, which are close to the reference solution; see
Figure 4.8. However, the unsplit central-upwind scheme, used to produce the reference solution,
is capable of accurately capturing the detonation wave speed using a mesh with Az < 1/3200,
which means that the efficiency gain achieved by the ADP method is more substantial than in the
previously considered less stiff regime.

We then reduce the reaction time even further and take 1/g; = 1/e5 = 107. We compute the
ADP and reference solutions until the same final time ¢ = 0.06 and plot the obtained results in
Figure 4.9. As one can see, when the ADP method is used on a coarse mesh with Az = 1/150,
the computed detonation waves propagates with a wrong speed. In order to achieve the correct
speed, one has to take a much finer mesh: after reducing the reaction times by a factor of 10, we
had to take Az = 1/6000, which is also 10 times smaller and this is about the borderline. This
implies that the mesh size should be proportional to the reaction time and thus the ADP method
cannot be used as an underresolved method. Nevertheless, it is instructive to compare the ADP
solutions with the reference solution, which is computed with Az = 1/50000 in Figure 4.9. In
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Figure 4.7: Example 9b: Pressure (p), temperature (7), mass fraction of Hy (z;) and mass fraction
of OH (z3) computed by the ADP and SDP methods for 77 = 75 = 1.5 and 1/e; = 1/, = 10°. The
small jumps in z; and z3 occurring at x = 0.5 are magnified.

fact, the unsplit central-upwind scheme can capture the detonation wave propagating with the
accurate speed with a slightly larger Ax as long as Az < 1/32000, which means that the ADP
method is still more efficient. However, it clearly becomes impractical in a very stiff regime with
small ignition temperatures.

Based on the above observations, we conjecture that the low efficiency of the ADP method in
the considered numerical example is related to the fact that the ignition temperatures are low. We
therefore proceed with the investigation of the solution behavior when the ignition temperatures
are slightly larger. To this end, we take 7y = 7, = 2 and consider several different sets of the
reaction times. We begin with 1/e; = 1/e5 = 10° and compute the numerical solutions by both
the ADP and SDP methods until the same final time ¢ = 0.06. In Figure 4.10, we present the
results obtained with Az = 1/150 together with the reference solution computed by the unsplit
central-upwind scheme using Az = 1/5000. As one can see, the ADP solution is reasonably
accurate though, as in the case of the lower ignition temperature (see Figure 4.7), it still has a
small jump in the mass fractions at x = 0.5 and the computed mass fraction values are quite
inaccurate in the post detonation wave area, which is at = € [0.8,1.3]. At the same time, the SDP
method clearly fails. We emphasize that the case of 1/e; = 1/e; = 10° is, as before, not very
stiff since the unsplit central-upwind scheme could have captured the accurate propagation of the
detonation wave as long as Az < 1/250.

We then reduce the reaction times and take 1/e; = 1/e5 = 10% without changing any other
data. In Figure 4.11, we plot the ADP and SDP solutions computed on a coarse mesh with
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Figure 4.8: Example 9b: Pressure (p), temperature (7), mass fraction of Hy (z1) and mass fraction of
OH (z3) computed by the ADP method with Az = 1/150 and 1/600 for 1/, = 1/e5 = 10°.

Az = 1/150 along with the reference solution computed with Az = 1/10000. As one can see, the
SDP solution is wrong, while the ADP solution is quite accurate. We also note that the efficiency
gain is more substantial now as the unsplit central-upwind scheme can be used with Az < 1/2500
only.

We finish this set of experiments by considering even smaller reaction times with 1/e; = 1/e5 =
107 and computing the numerical solutions by the ADP method on a coarse mesh with Az = 1/150.
The obtained results are depicted in Figure 4.12 together with the reference solution computed
using Az = 1/50000 and the ADP solution computed in the extremely stiff setting. As one can
see, the obtained solutions are in very good agreement, which confirms that the ADP method is
applicable and very efficient in the case of larger ignition temperatures. We also mention that the
efficiency gain is now even more crucial as the unsplit central-upwind scheme requires the mesh
size to be Az < 1/30000.

Example 9¢c—2-D Extremely Stiff Case
We now consider the 2-D extremely stiff case with the initial data taken from [4, Example 5.6]:

(2,10,0,40,0,0,0.17,0.63,0.2), if r < £(y),

P, U, U, P, 21, 22, 23, 24,y ~ x7y70 =
( 1, 22, 23, 24, 25) ( ) { (1,0,0,1,0.08,0.72,0,0,0.2), if r > &(y),
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Figure 4.9: Example 9b: Same as in Figure 4.8, but for 1/e; = 1/&; = 107.

where r = /22 + 92 and

125 — |y — 12.5], if |y — 12.5] < 7.5,
() = .
5, if |y —12.5] > 7.5.

In this example, we set g3 = —40, 77 = 2, 75 = 10, and use the ADP operator (4.11) with the same
projection mass fraction values, which were used in Example 9a, namely, 277 = 0, zIT = 0.035,
AT =0.08, 28T =0, 20T =0, 207 = 0.72, 28T = 0.17, 2i7 = 0.765 and zIT = 0. The problem is
solved in the computational domain [0, 150] x [0, 25] using a uniform mesh with Az = Ay = 1/2.
Solid wall boundary conditions are implemented along the boundaries y = 0 and y = 25, and free
boundary conditions are used at x = 0 and = = 150. In Figure 4.13, we show contour plots of the
density computed by both the ADP and SDP methods at times ¢t = 2, 4, 6 and 8. We also plot,
in Figure 4.14, profiles of pressure, temperature and 300 times mass fraction of Hy (as before, we
plot 300z, rather then z; for a better visualization) along the line y = 12.5 at the same times.
As one can clearly see from these figures, the ADP and SDP solutions are very different in this
example. As the ADP solution agrees well with the one reported in [4, Example 5.6], we conclude
that the ADP method captures the detonation wave propagating with the correct speeds.
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Figure 4.10: Example 9b: Same as in Figure 4.7, but with 7, = 75 = 2.

Example 9d—2-D Stiff case

In the last example, we consider the 2-D case with the radially symmetric initial data given by

(2, uin(z, y), vin(x, y),40,0,0,0.17,0.63,0.2), if r < 0.5,

p7u7v7p727272727z x7y70 =
( 172 2 240 2)(2: 9, 0) {(1,0,0,1,0.08,0.72,0,0,0.2), it > 0.5,

where 7 = /2?2 + 42, upn(x,y) = 10z/r and vy, (z,y) = 10y/r. Other parameters are the same
as in Example 9¢c: g3 = —100, 73 = 75 = 1.5 and 1/e; = 1/e5 = 10°. We compute the solution
until the final time t = 0.06 by both the ADP and SDP methods in the computational domain
[—2,2] x [0,2] using a uniform mesh with Az = Ay = 1/200. The solid wall boundary conditions
are used along the bottom part of the domain, while the free boundary conditions are implemented
at the other parts of the boundary. Contour plots of the density, pressure, temperature and mass
fraction of Hy are presented in Figures 4.15. As one can clearly see, the results obtained by the
ADP and SDP methods are very different. In order to verify that the ADP solution converges
to the physically relevant one, we compute the solutions by both the ADP and SDP methods
using a finer mesh with Az = Ay = 1/400 and present the results in Figure 4.16. As one can
see, the position of the detonation wave in the obtained ADP solutions is about the same, which
suggests that the ADP method captures the detonation wave propagating with the correct speed.
On contrary, the SDP solution is clearly mesh dependent and thus it fails.
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Figure 4.11: Example 9b: Same as in Figure 4.10, but with 1/g; = 1/g5 = 10°.

5 Conclusion

In this paper, we have considered inviscid, compressible, reactive flows governed by the Euler
equations coupled with a transport equation for the fraction of unburnt gas. For small reaction
times, the chemical reaction may be considered infinitely fast and thus the transport equation has
a stiff source term, which can be efficiently treated by projecting the computed solution onto an
equilibrium state. A straightforward projection however has a major drawback: it may lead to a
spurious detonation wave that travels with an nonphysical speed even if the scheme is stable, as
we illustrated in our numerical examples. Here, we have shown how the “standard” deterministic
projection approach can be modified to provide an accurate approximation for the underlying
model. As the result, we have designed a simple, robust and stable underresolved method for stiff
detonation waves using an accurate deterministic projection (ADP) approach and demonstrated
that the proposed computational technique guarantees that the detonation waves will propagate
with a physically relevant speed. For the stiff waves, when the chemical reaction time scale are
not so much faster than the fluid dynamical ones, the chemical reaction may not be considered
infinitely fast. Otherwise, many details in the reaction will be hidden. For this reason, we extent
the proposed ADP method for solving the stiff cases. We also extent the ADP method to 1-D and
2-D multispecies waves, including extremely stiff and stiff cases. A number of numerical examples
have been presented to show the good performance of the proposed ADP method.
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Figure 4.12: Example 9b: Pressure (p), temperature (7), mass fraction of Hy (z;) and mass fraction
of OH (23) computed by the stiff and extremely stiff ADP methods for 1/, = 1/e5 = 107.
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A Semi-Discrete Central-Upwind Scheme

In this section, we briefly describe the semi-discrete central-upwind scheme for the homogeneous
2-D systems (2.1), (1.3) and (2.4), (1.3). The 2-D semi-discrete central-upwind scheme from [21]
admits the following flux form:

T Y _ Y
4T ) = B By = iy (A.1)
at " Az Ay ’ '

where the numerical fluxes are

a j+ik F(U ) + kF(UjW&—l,k) a;:_%kaj__*_l’k
Hiw=—— 0 —& L — (U = Ujil
J+ik Jt+ik J+ik J+ik (A2)
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Figure 4.13: Example 9c: Contour plots of density (p) computed by the ADP (left column) and SDP
(right column) methods at different times.

The quantities ﬁj7k, H?,, HY a;fk, a; U‘ij, UX{C, U}Yk and Uﬁk depend in fact on t, but we

J 3k gk g
suppress this dependence for the sake of brevity.
In (A.2),
— Ax — Ax
Ufk =U;;+ T(Uz)j+%’k’ UJ\% =Ujr — T(Ux)j-t,-%,ka
= Ay = Ay
Uik = Ujk + = (Uy)j43 Upi = Usr = 5 (Uy)r1

are the point values of the piecewise linear reconstruction

U(r,y) = Ujp + (Ua)julz — 2) + (Uy)july —yr)  for (2,y) € (2;-1,2551) X (Ye_1,Ypy 1)
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Figure 4.14: Example 9c: Pressure (p), temperature (7) and 300 times mass fraction of Hy (300z)
computed by the ADP (left column) and SDP (right column) methods at different times.
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Figure 4.15: Example 9d: Density (p), pressure (p), temperature (7) and mass fraction of Hy (z;)
computed by the ADP (left column) and SDP (right column) methods with Az = Ay = 1/200.

at the midpoints of the edges of cell (j, k).
The numerical derivatives (U,);, and (U,),x are to be computed using a nonlinear limiter.
We have used a minmod limiter (see, e.g., [25,27,29]), which gives

(Uj—i-l,k - ﬁj,k ﬁj,k - ﬁj—l,k)

(U,)j,r = minmod

(U,);x = minmod

where the minmod function is defined as

sgn(a) + sgn(b)
2
One-sided local propagation speeds in the z- and y-directions a= and b | are obtained

minmod(a, b) := -min(]al, |b]).
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Figure 4.16: Example 9d: Same as in Figure 4.15, but for Az = Ay = 1/400.

using the largest/smallest eigenvalues of the Jacobian. For the reactive Euler systems (2.1), (1.3)
and (2.4), (1.3), we obtain

E W
+ E TPk w TPj+1,k
@/ 1, =mMax (uj,k + B Yitie T w0
2 Pik Pik
E W
_ VP k. TPii1 k
j+ik J.k E 0 Yjtlk W ’
: Pk Pk
N S
v N Pk s TPjk+1
bl 1 = max (Uj,k + N Wikt T s— 0/,
2 Pjk Pj.k
N S
b- min | v}, — sk uS )ikt 0
ot L ik N Wjkt1 S
2 Pjk Pjk
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Finally, the ODE system (A.1) is numerically integrated by the three-stage third-order strong

stability preserving (SSP) Runge-Kutta method; see, [10,11].
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