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Abstract. Non-equilibrium hyperbolic traffic models can be derived as continuum
approximations of car-following models and in many cases the resulting continuum
models are non-conservative. This leads to numerical difficulties, which seem to have
discouraged further development of complex behavioral continuum models, which is
a significant research need.

In this paper, we develop a robust numerical scheme that solves hyperbolic traffic
flow models based on their non-conservative form. We develop a fifth-order alter-
native weighted essentially non-oscillatory (A-WENO) finite-difference scheme based
on the path-conservative central-upwind (PCCU) method for several non-equilibrium
traffic flow models. In order to treat the non-conservative product terms, we use a
path-conservative technique. To this end, we first apply the recently proposed second-
order finite-volume PCCU scheme to the traffic flow models, and then extend this
scheme to the fifth-order of accuracy via the finite-difference A-WENO framework.
The designed schemes are applied to three different traffic flow models and tested on
a number of challenging numerical examples. Both schemes produce quite accurate re-
sults though the resolution achieved by the fifth-order A-WENO scheme is higher. The
proposed scheme in this paper sets the stage for developing more robust and complex
continuum traffic flow models with respect to human psychological factors.
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1 Introduction

This paper is focused on the development of robust and highly accurate numerical meth-
ods for non-equilibrium continuum traffic flow models, as non-conservative systems of
hyperbolic PDEs.

Continuum models treat traffic flow as a compressible fluid, and study its behavior
using aggregated state variables (for instance, flow and density) and are useful for real-
world traffic regarding operation and control [48]. Numerous continuum models have
been developed over time to accommodate various empirical and behavioral aspects of
traffic flow (see [47] for a critical review), which can be categorized into two broad fami-
lies of equilibrium and non-equilibrium models.

Equilibrium models rely primarily on the differential forms of the mass conservation
principle and some explicit functional forms between the state-variables (that is, speed
and density). The most prominent example is the seminal Lighthill-Whitham-Richards
(LWR) model [40, 54], which for a section of homogeneous road without intersections,
can be presented as

ρt+(ρV)x =0, V=Ve(ρ), (1.1)

where x is the spatial variable, t is the time, ρ(x,t) is the density, and Ve(ρ) describes
traffic speed as a generic function of local traffic density. The standard LWR model treats
the multi-lane traffic as a single-pipe, assuming all vehicles and drivers have the same
properties. Over time, numerous extensions of the LWR model have been proposed to
incorporate various aspects such as multi-lane driving and lane-changing manoeuvres
(see, e.g., [15,16,25,29]), different vehicle types (see, e.g., [4,49,53,61,62,64]), and drivers’
non-local anticipation of traffic condition ahead (see, e.g., [5, 10, 11, 57]).

Regardless of their underlying rationales, all equilibrium models are derived from
the flow conservation principles, and thus, can always be presented in the form of the
system of balance laws:

Ut+F(U)x =S(U), (1.2)

where U are the state variables, F are the nonlinear fluxes, and S(U) are the source terms.
Therefore, equilibrium models are often solved using numerical methods for hyperbolic
conservation and balance laws; see, e.g., [20, 35, 44, 69].

Non-equilibrium models, on the other hand, use the same flow continuity equation
as in (1.1), but with the speed adapted as a dynamic process. The majority of non-
equilibrium models can be presented in the following generic form:{

ρt+(ρV)x =0,
Vt+VVx = f (ρ,V,ρx,Vx,···).
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These models are particularly useful for capturing some complex traffic phenomena such
as emergence of traffic instabilities [60], capacity drop phenomenon downstream the
ramp areas [51], and the hysteresis effects [67]. Some non-equilibrium models are phe-
nomenological and are derived directly from fluid mechanics concepts (see, e.g., [13,37]),
whereas others are derived from the gas-kinetic theory (see, e.g., [26,59]), or car-following
relations (see, e.g., [27,65,70,71]). The majority of existing non-equilibrium models can be
formulated in the conservative form (1.2), in which case, the aforementioned numerical
methods can be implemented.

However, the conservative form cannot necessarily be guaranteed for certain non-
equilibrium models. Lack of the conservation property is likely to be the case when non-
equilibrium models are derived from car-following models (see, e.g., [23, 24, 65, 71] and
the review paper [55]) and behavioral premises, rather then from conservation principles
[68]. In such case, the central idea is to incorporate human psychological factors (for
instance, driver memory) into the car-following models as time-dependent ODEs and
then to derive a continuum approximation in the Eulerian coordinates. Such practice
often results in the emergence of non-conservative products.

The non-conservative traffic flow models can be presented in the following form:

Ut+F(U)x =B(U)Ux+S(U), (1.3)

or in the equivalent quasi-linear form:

Ut+A(U)Ux =S(U), (1.4)

where A(U) = A(U)−B(U) and A(U) := ∂F(U)
∂U is the Jacobian. Development of such

behavioral non-equilibrium non-conservative models is an important research direction
as numerous empirical observations have established behavioral foundations for many
complex traffic phenomena such as traffic oscillations and hysteresis phenomena (see,
e.g., [8,56]). However, the inherent numerical difficulties associated with non-conservative
hyperbolic systems has remained an obstacle from an implementation perspective, thereby
hindering the development of such urgently needed behavioral continuum models.

To the best of our knowledge, traffic flow models of the form (1.3) or (1.4) have only
been investigated analytically: this is possible since even though the models described by
the system (1.4) are non-conservative, they are analytically tractable since the matrix A is
known. However, no rigorous numerical studies of these models have been conducted.

In general, development of accurate and robust numerical methods for (1.3) is a chal-
lenging task due to the presence of non-conservative product terms. When U is discontin-
uous, weak solution of the system (1.3) cannot be understood in the sense of distributions.
Instead, one can introduce weak solutions in the sense of Borel measures as it was done
in [17, 38, 39], and later used to introduce a concept of path-conservative finite-volume
methods; see, e.g., the review papers [6, 52] and reference therein.

This paper aims to develop a robust numerical scheme for non-conservative traffic
flow behavioral models, and thereby to pave the way for further development of behav-
ioral non-equilibrium models. The contributions of this paper are three-fold.



S. Chu et al. / Commun. Comput. Phys., 33 (2023), pp. 692-732 695

First, we develop path-conservative central-upwind (PCCU) numerical schemes for
hyperbolic traffic flow models based on their non-conservative form as in (1.3). The
PCCU schemes were derived in [7] for general 1-D non-conservative hyperbolic sys-
tems (1.3). While these schemes are robust and thus applicable to a wide variety of non-
conservative system, they are only second-order accurate and this limits their ability to
achieve high resolution of certain practically important solutions.

Higher-order PCCU schemes have been recently developed in [12] in the framework
of finite-difference alternative weighted essentially non-oscillatory (A-WENO) schemes.
Our second contribution is to modify the A-WENO PCCU scheme from [12] and apply
the modified scheme to three different traffic models from [65, 70, 71]. The modification
is necessary as the schemes from [12] may produce inaccurate and oscillatory results in
several important numerical examples. The resulting second- and fifth-order schemes
are tested on a number of challenging numerical examples, which clearly show that both
schemes are robust and capable of producing quite accurate results. At the same time, the
fifth-order A-WENO PCCU scheme produces sharper results in many of the considered
numerical examples.

Thirdly, we propose efficient treatments to suppress the inherent numerical oscilla-
tions that may potentially arise when WENO-type schemes are applied to nonlinear hy-
perbolic systems. We emphasize that even though our A-WENO PCCU scheme is based
on a very accurate and essentially non-oscillatory WENO-Z interpolation [12, 28, 41, 63]
applied to the characteristic fields using the local characteristic decomposition [12,19,28,
41, 50, 63], oscillations can still occur. Therefore, in order to suppress these non-physical
spurious oscillations, we supplement the developed A-WENO PCCU scheme with the
adaptive artificial viscosity (AAV) taken to be proportional to the size of the weak local
residual (WLR) as it was proposed in [9, 34] for general hyperbolic systems of conserva-
tive laws. We compute the WLR based on the conservative continuity equation, which al-
lows us to directly extend the AAV approach from [9,34] to the studied non-conservative
systems.

The rest of the paper is organized as follows. In Section 2, we briefly describe a
second-order finite-volume (FV) PCCU scheme for the non-conservative system (1.4).
In Section 3, we construct a new fifth-order A-WENO PCCU scheme. In Section 4, we
show how the AAV can be incorporated into the proposed A-WENO PCCU scheme. In
Section 5, we present the numerical results. Finally, in Section 6, we give some conclud-
ing remarks and comment on the future development and applications of the proposed
A-WENO PCCU scheme.

2 Second-order FV PCCU schemes: A brief overview

In this section, we consider the non-conservative hyperbolic system (1.4) and review the
second-order FV PCCU schemes introduced in [7] and then modified in [12].
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Suppose that a numerical solution realized in terms of its cell averages

U j(t) :≈ 1
∆x

∫
Cj

U(x,t)dx,

is available at a certain time t. Here, Cj :=
(
xj− 1

2
,xj+ 1

2

)
are the cells, which are assumed

(for simplicity) to be uniform so that xj+ 1
2
−xj− 1

2
≡∆x for all j. The cell centers are then

given by xj = xj− 1
2
+∆x/2.

The numerical solution is evolved in time by solving the following system of ODEs:

dU j

dt
=− 1

∆x

[
Hj+ 1

2
−Hj− 1

2
−Bj−

a+
j− 1

2

a+
j− 1

2
−a−

j− 1
2

BΨ,j− 1
2
+

a−
j+ 1

2

a+
j+ 1

2
−a−

j+ 1
2

BΨ,j+ 1
2

]
+S(Uj), (2.1)

which is obtained by applying the semi-discrete PCCU scheme from [12] to the system
(1.4). Note that all of the indexed quantities in (2.1) are time-dependent, but from here on
we omit this dependence for the sake of brevity. In (2.1),

Hj+ 1
2
=

a+
j+ 1

2
F(U−

j+ 1
2
)−a−

j+ 1
2
F(U+

j+ 1
2
)

a+
j+ 1

2
−a−

j+ 1
2

+
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
−a−

j+ 1
2

(
U+

j+ 1
2
−U−

j+ 1
2
−Qj+ 1

2

)
(2.2)

are CU numerical fluxes derived in [33]. Here, U±
j+ 1

2
are the right- and left-sided point

values of U at the cell interface x=xj+ 1
2
. They are obtained with the help of a conservative

piecewise linear reconstruction,

Ũ(x)=U j+(Ux)j(x−xj), x∈Cj, (2.3)

which gives

U−
j+ 1

2
=U j+

∆x
2
(Ux)j, U+

j+ 1
2
=U j+1−

∆x
2
(Ux)j+1.

The slopes (Ux)j in (2.3) are to be computed using a nonlinear limiter to ensure the non-
oscillatory nature of this reconstruction. In all of the numerical experiments reported in
Section 5, we have used the minmod limiter (see, e.g., [58]):

(Ux)j =minmod

(
U j−U j−1

∆x
,
U j+1−U j

∆x

)
,

applied in the component-wise manner. Here, the minmod function is defined as

minmod(z1,z2) :=
sign(z1)+sign(z2)

2
·min(|z1|,|z2|).



S. Chu et al. / Commun. Comput. Phys., 33 (2023), pp. 692-732 697

Next,
Qj+ 1

2
=minmod

(
U+

j+ 1
2
−U∗

j+ 1
2
,U∗

j+ 1
2
−U−

j+ 1
2

)
,

where

U∗
j+ 1

2
=

a+
j+ 1

2
U+

j+ 1
2
−a−

j+ 1
2
U−

j+ 1
2
−
{

F(U+
j+ 1

2
)−F(U−

j+ 1
2
)
}

a+
j+ 1

2
−a−

j+ 1
2

is a “built-in” anti-diffusion term in the numerical flux (2.2), and

a−
j+ 1

2
=min

{
λ1
(
A(U+

j+ 1
2
)
)
,λ1
(
A(U−

j+ 1
2
)
)
,0
}

, a+
j+ 1

2
=max

{
λN
(
A(U+

j+ 1
2
)
)
,λN

(
A(U−

j+ 1
2
)
)
,0
}

,

are estimates of the one-sided local speeds of propagation obtained using the eigenvalues
of A: λ1(A)≤···≤λN(A).

Finally, the terms Bj and BΨ,j+ 1
2

in (2.1) reflect the contributions of the non-conservative
product terms inside the computational cell Cj and at its interface xj+ 1

2
, respectively:

Bj :≈
∫
Cj

B
(
Ũ(x)

)dŨ(x)
dx

dx, BΨ,j+ 1
2

:≈
1∫

0

B
(
Ψj+ 1

2
(s))

dΨj+ 1
2
(s)

ds
ds. (2.4)

Here, Ψj+ 1
2
(s) is a path connecting the left- and right-sided states U−

j+ 1
2

and U+
j+ 1

2
at each

cell interface and in this paper, we have used the linear segment path

Ψj+ 1
2
(s)=U−

j+ 1
2
+s
(
U+

j+ 1
2
−U−

j+ 1
2

)
. (2.5)

Substituting (2.3) and (2.5) into (2.4) results in

Bj ≈
1
2

[
B
(
U+

j− 1
2

)
+B
(
U−

j+ 1
2

)](
U−

j+ 1
2
−U+

j− 1
2

)
,

BΨ,j+ 1
2
≈ 1

2

[
B
(
U−

j+ 1
2

)
+B
(
U+

j+ 1
2

)](
U+

j+ 1
2
−U−

j+ 1
2

)
.

3 Fifth-order A-WENO finite-difference PCCU schemes

In this section, we extend the second-order FV PCCU scheme reviewed in Section 2 to
a fifth-order A-WENO PCCU scheme. We begin along the lines of [12] and rewrite the
non-conservative system (1.4) in the following quasi-conservative form:

Ut+K(U)x =S(U), K
(
U(x,t)

)
=F

(
U(x,t)

)
−

x∫
x̂

B
(
U(ξ,t)

)
Ux(ξ,t)dξ, (3.1)
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where K is a global flux and x̂ is an arbitrary number. The fifth-order A-WENO scheme
for the system (3.1) then reads as (see [12])

dUj

dt
=− 1

∆x

[
Hj+ 1

2
−Hj− 1

2
−Bj−

a+
j− 1

2

a+
j− 1

2
−a−

j− 1
2

BΨ,j− 1
2
+

a−
j+ 1

2

a+
j+ 1

2
−a−

j+ 1
2

BΨ,j+ 1
2

]
+

∆x
24

[
(Kxx)j+ 1

2
−(Kxx)j− 1

2

]
− 7

5760
(∆x)3

[
(Kxxxx)j+ 1

2
−(Kxxxx)j− 1

2

]
+S(Uj). (3.2)

Here, Hj+ 1
2
, Bj, BΨ,j+ 1

2
and a±

j+ 1
2

are defined as in Section 2, but with U±
j+ 1

2
computed using

the fifth-order WENO-Z interpolant from [12,28,41,63] applied to the local characteristic
variables. The details on the WENO-Z interpolant are prescribed in Appendix A, and
the details on the local characteristic decompositions for each of the studied traffic flow
systems can be found in Section 5.

Finally, (Kxx)j+ 1
2

and (Kxxxx)j+ 1
2

are finite-difference approximations of the second-
and fourth-order spatial derivatives of the function K(U(·,t)). They can be computed
in the way, which was proposed in [12, §4]; namely, using the facts that Kxx = Fxx−
(B(U)Ux)x and Kxxxx = Fxxxx−(B(U)Ux)xxx. However, the resulting A-WENO scheme
would be quite oscillatory when applied to the studied traffic flow models. We there-
fore propose a new way of evaluating (Kxx)j+ 1

2
and (Kxxxx)j+ 1

2
. We use the following

finite-difference approximations:

(Kxx)j+ 1
2
=

1
48(∆x)2

(
−5Kj−2+39Kj−1−34Kj−34Kj+1+39Kj+2−5Kj+3

)
,

(Kxxxx)j+ 1
2
=

1
2(∆x)4

(
Kj−2−3Kj−1+2Kj+2Kj+1−3Kj+2+Kj+3

)
,

where Kj =F(Uj)− Ij−1 and

Ij :≈
xj+1∫
xj

B
(
U(ξ,t)

)
Ux(ξ,t)dξ. (3.3)

In order to obtain a fifth-order numerical scheme, the integral Ij needs to be evaluated at
least within the fifth order of accuracy. To this end, we develop a special fifth-order A-
WENO quadrature for the integrals in (3.3). Our quadrature is the Newton-Cotes method
based on the five points xj, xj+ 1

4
, xj+ 1

2
, xj+ 3

4
and xj+1, and the corresponding values of

U at these points: Uj, Uj+ 1
4
, Uj+ 1

2
, Uj+ 3

4
and Uj+1. Notice that the values Uj and Uj+1

are given. We then set Uj+ 1
2
=
(
U−

j+ 1
2
+U+

j+ 1
2

)
/2 and evaluate Uj+ 1

4
and Uj+ 3

4
using the

WENO-Z interpolant. Here, we show how to compute Uj+ 1
4

as Uj+ 3
4

can be calculated in
the mirror-symmetric way.
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For each component of Uj+ 1
4
, the value U(i)

j+ 1
4

is calculated using a weighted average

of the three parabolic interpolants P (i)
0 (x), P (i)

1 (x) and P (i)
2 (x) as in (A.1), namely,

U(i)
j+ 1

4
=

2∑
k=0

ω
(i)
k P (i)

k (xj+ 1
4
),

where

P (i)
0 (xj+ 1

4
)=

5
32

U(i)
j−2−

9
16

U(i)
j−1+

45
32

U(i)
j ,

P (i)
1 (xj+ 1

4
)=− 3

32
U(i)

j−1+
15
16

U(i)
j +

5
32

U(i)
j+1,

P (i)
2 (xj+ 1

4
)=

21
32

U(i)
j +

7
16

U(i)
j+1−

3
32

U(i)
j+2,

and the weights ω
(i)
k are calculated by (A.2)–(A.4), but with d0 = 7/64, d1 = 21/32 and d2 =

15/64.
Equipped with the point values of Uk, k= j, j+ 1

4 , j+ 1
2 , j+ 3

4 and j+1, we first construct
a fourth-degree interpolating polynomials in the interval [xj,xj+1]. We then use the same
interpolation technique to approximate all entries in the matrix B(U), and substitute the
obtained interpolating polynomials into the integral in (3.3), which is then evaluated ex-
actly.

In order to evaluate Ij, we notice that we will need to evaluate integrals of the form∫ xj+1
xj

σϕx dx, where σ :=
(
B(U)

)
mℓ

and ϕ :=U(ℓ). To this end, we take the interpolating
polynomial

σ̃(x)=
1

3(∆x)4

[
3(∆x)4σj−(∆x)3(25σj−48σj+ 1

4
+36σj+ 1

2
−16σj+ 3

4
+3σj+1

)
(x−xj)

+2(∆x)2(35σj−104σj+ 1
4
+114σj+ 1

2
−56σj+ 3

4
+11σj+1

)
(x−xj)

2

−16∆x
(
5σj−18σj+ 1

4
+24σj+ 1

2
−14σj+ 3

4
+3σj+1

)
(x−xj)

3

+32
(
σj−4σj+ 1

4
+6σj+ 1

2
−16σj+ 3

4
+σj+1

)
(x−xj)

4
]
, x∈ [xj,xj+1],

and the derivative of the interpolating polynomial ϕ̃x(x), namely,

ϕ̃x(x)=
1

3(∆x)4

[
(∆x)3(−25ϕj+48ϕj+ 1

4
−36ϕj+ 1

2
+16ϕj+ 3

4
−3ϕj+1

)
+4(∆x)2(35ϕj−104ϕj+ 1

4
+114ϕj+ 1

2
−56ϕj+ 3

4
+11ϕj+1

)
(x−xj)

−48∆x
(
5ϕj−18ϕj+ 1

4
+24ϕj+ 1

2
−14ϕj+ 3

4
+3ϕj+1

)
(x−xj)

2

+128
(
ϕj−4ϕj+ 1

4
+6ϕj+ 1

2
−4ϕj+ 3

4
+ϕj+1

)
(x−xj)

3)
]
, x∈ [xj,xj+1],
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and then substitute them into
∫ xj+1

xj
σϕx dx to obtain

xj+1∫
xj

σϕx dx≈
xj+1∫
xj

σ̃(x)ϕ̃x(x)dx=Q(σj,σj+ 1
4
,σj+ 1

2
,σj+ 3

4
,σj+1,ϕj,ϕj+ 1

4
,ϕj+ 1

2
,ϕj+ 3

4
,ϕj+1)

:=
1

1890

[
σj
(
−945ϕj+1472ϕj+ 1

4
−804ϕj+ 1

2
+384ϕj+ 3

4
−107ϕj+1

)
+σj+ 1

4

(
−1472ϕj+2112ϕj+ 1

2
−1024ϕj+ 3

4
+384ϕj+1

)
+σj+ 1

2

(
804ϕj−2112ϕj+ 1

4
+2112ϕj+ 3

4
−804ϕj+1

)
+σj+ 3

4

(
−384ϕj+1024ϕj+ 1

4
−2112ϕj+ 1

2
+1472ϕj+1

)
+σj+1

(
107ϕj−384ϕj+ 1

4
+804ϕj+ 1

2
−1472ϕj+ 3

4
+945ϕj+1

)]
. (3.4)

Remark 3.1. In order to ensure the designed A-WENO PCCU scheme is fifth-order ac-
curate, the term Bj needs to be evaluated using at least a fifth-order quadrature. In this
paper, we use the same Newton-Cotes quadrature Q as in (3.4), namely,∫

Cj

σϕx dx≈
∫
Cj

σ̃(x)ϕ̃x(x)dx=Q(σj− 1
2
,σj− 1

4
,σj,σj+ 1

4
,σj+ 1

2
,ϕj− 1

2
,ϕj− 1

4
,ϕj,ϕj+ 1

4
,ϕj+ 1

2
).

4 Adaptive artificial viscosity (AAV)

The fifth-order A-WENO PCCU scheme presented in Section 3 is essentially non-
oscillatory. However, in some situations the so-called WENO-type oscillations may ap-
pear and they may be quite large. Recent studies [44, 45] have found that numerical
oscillations particularly arise when high-order schemes are applied to the class of non-
equilibrium continuum models devoid of source terms (see, e.g., [70]), which are studied
in this paper (see Section 5.3). In order to suppress these oscillations, we propose to add a
certain amount of the AAV within the A-WENO framework. This results in the following
A-WENO PCCU scheme with the AAV (compare with (3.2)):

dUj

dt
=− 1

∆x

[
Hj+ 1

2
−Hj− 1

2
−Bj−

a+
j− 1

2

a+
j− 1

2
−a−

j− 1
2

BΨ,j− 1
2
+

a−
j+ 1

2

a+
j+ 1

2
−a−

j+ 1
2

BΨ,j+ 1
2

]
+

∆x
24

[
(Kxx)j+ 1

2
−(Kxx)j− 1

2

]
− 7

5760
(∆x)3

[
(Kxxxx)j+ 1

2
−(Kxxxx)j− 1

2

]
+S(Uj) (4.1)

+µ
ε j+ 1

2

(
Uj+1−Uj

)
−ε j− 1

2

(
Uj−Uj−1

)
(∆x)2 . (4.2)



S. Chu et al. / Commun. Comput. Phys., 33 (2023), pp. 692-732 701

Here, µ is a positive constant and ε j+ 1
2

:= |Ej+ 1
2
(t)|, where Ej+ 1

2
(t) is the WLR (which was

derived in [34]) computed based on the conservative continuity equation ρt+(ρV)x =0:

Ej+ 1
2
(t)=

∆x
6

[
ρj+ 3

2
(t)−ρj+ 3

2
(t−∆t)+4

(
ρj+ 1

2
(t)−ρj+ 1

2
(t−∆t)

)
+ρj− 1

2
(t)−ρj− 1

2
(t−∆t)

]
+

∆t
4

[
(ρV)j+ 3

2
(t)−(ρV)j− 1

2
(t)+(ρV)j+ 3

2
(t−∆t)−(ρV)j− 1

2
(t−∆t)

]
, (4.3)

where ρj+ 1
2

:=
(
ρ−

j+ 1
2
+ρ+

j+ 1
2

)
/2 and (ρV)j+ 1

2
:=
[
(ρV)−

j+ 1
2
+(ρV)+

j+ 1
2

]
/2.

The constant µ is to be selected for each problem at hand. As suggested in [9, 34], we
tune µ on a coarse mesh and then use the same value of µ on finer meshes. We note that
in most examples considered in Section 5, we have used µ = 0 as the A-WENO PCCU
scheme from Section 3 typically does not generate large oscillations.

We note that adding the AAV on the RHS of (4.1) affects the formal order of accuracy
of the semi-discrete A-WENO scheme. Indeed, substituting a smooth exact solution sat-
isfying ρt+(ρV)x =0 into (4.3) and using the Taylor expansion about (xj+ 1

2
,t− ∆t

2 ) result
in

Ej+ 1
2
(t)=− 1

12
∆x(∆t)3ρttt+O

(
∆x(∆t)5)+O

(
(∆x)3(∆t)3)+O

(
(∆x)5∆t

)
. (4.4)

At the same time, the magnitude of the WLR near shocks is O(∆x)+O(∆t), which is
sufficiently large to suppress most of the oscillations appearing in the vicinities of shocks.

Based on (4.4), one can conclude that the formal order of accuracy of the resulting
fully discrete scheme based on the semi-discretization (4.1) depends on the accuracy of
the ODE solver used for the time discretization. In all of the numerical examples re-
ported in Section 5, we have used the three-stage third-order strong stability preserving
(SSP) Runge-Kutta method (see, e.g., [21, 22]), which is commonly used due to its high
efficiency combined with very good stability properties, both the linear and nonlinear
ones. Therefore, the size of the local truncation error of the resulting fully discrete scheme
becomes

O
(
(∆x)5)+O

(
(∆t)3)+O

(
∆x(∆t)3), (4.5)

which means that adding the AAV does not reduce the formal order of accuracy of the
proposed A-WENO scheme. If a higher-order ODE solver is utilized, then the use of the
WLR (4.3) will reduce the order. In order to prevent the order reduction, (4.3) can be
replaced with a higher-order WLR (introduced in [31, 32]), which is based on the data
computed on three consecutive time levels rather than the two levels used in (4.3).

5 Non-equilibrium traffic flow models in the non-conservative
form: Numerical tests and discussion

In this section, we implement the proposed numerical scheme on various non-
equilibrium traffic flow models. We test the proposed fifth-order A-WENO PCCU
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scheme on several numerical examples and compare its performances with the corre-
sponding second-order FV PCCU scheme. The tested schemes will be referred to as the
5-Order Scheme and 2-Order Scheme, respectively.

In all of the examples, we use the CFL number 0.5 and impose free boundary condi-
tions since our primary focus is on Riemann problems at homogeneous sections of free-
ways and not the boundary conditions at junctions. In most cases, where the structure of
solutions is well-known, we only present the results for the traffic density to save space.
Wherever applicable, we also present the results for the traffic speed to supplement the
theoretical discussions.

5.1 The Aw-Rascle-Zhang model in the non-conservative form

In the first example, we consider the Aw-Rascle-Zhang (ARZ) model introduced in [3,70].
We emphasize that this model can be written in the conservative form as:{

ρt+(ρV(ρ,ω))x =0,
ωt+(ωV(ρ,ω))x =0,

(5.1)

where ω := ρ(V−Ve(ρ)) describes the deviation of traffic flow from the “equilibrium”
state. Characteristic speeds in the ARZ model are

λ1=V+C(ρ) and λ2=V, (5.2)

where C(ρ)=ρV ′
e (ρ) is the propagation speed of smooth variations in traffic density from

the perspective of the LWR model (1.1).
Even though the ARZ model is conservative and thus can be solved by numerical

methods for hyperbolic systems of conservation laws, we consider the ARZ model and
solve it in both conservative and non-conservative forms for several reasons:

(1) to showcase our proposed numerical scheme for capturing solution structures against
well-established benchmarks. Note that the existence of global entropic weak solutions
were proved for the ARZ model in [1], and its analytic solutions were obtained in [36,42];

(2) to demonstrate the robustness of the proposed schemes as high-order numerical meth-
ods often exhibit spurious oscillations around intermediate states, such as those connect-
ing shocks and contact discontinuities; see [44, 45];

(3) due to strong potentials of the ARZ model to accommodate complex human psycho-
logical factors. This model can be viewed as a hydrodynamic limit of stimulus-response
car-following models [2], where drivers’ response time is a simplified function of avail-
able spacing. The stimulus-response models can be easily extended to incorporate com-
plex human psychological factors (e.g., risk perception, perception errors), in which case,
the resulting continuum models are likely to be non-conservative.
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We now discuss the specifications for the numerical experiments. The function Ve(ρ)
in (5.1) is adopted as

Ve(ρ)=Vmax

(
1− ρ

ρmax

)
, (5.3)

where ρmax and Vmax are constants representing the maximum density and speed, re-
spectively. For all of the numerical tests in this example, we choose ρmax=0.18veh/m and
Vmax =30m/s from the typical range as in [44]. While the function in (5.3) is inadequate
with respect to empirical observations [43], it results in well-known analytic solutions.
With respect to (5.3), the field that corresponds to λ1 in (5.2) is genuinely nonlinear in the
entire density domain (0,ρmax] and can produce shock waves in deceleration (referred to
as H1) or rarefaction waves in acceleration (referred to as R1). On the other hand, the
field that corresponds to λ2 is linearly degenerate and can only produce contact disconti-
nuities (referred to as C2 waves).

The conservative system (5.1), (5.3) can be viewed as the system (1.4) with B(U)= 0
and S(U)=0. Thus, we compute its numerical solutions using the fifth-order A-WENO
scheme presented in Section 3, but with Bj = 0, BΨ,j+ 1

2
= 0 and S(Uj) = 0. In order to

implement the proposed numerical scheme, we rewrite the conservative system (5.1),
(5.3) in the non-conservative form as

ρt+(ρV)x =0,

Vt+(
V2

2
)x =−C(ρ)Vx,

(5.4)

where
C(ρ)=ρV ′

e (ρ)=−Vmax

ρmax
ρ. (5.5)

As mentioned in Section 3, we apply the WENO-Z interpolation procedure to the local
characteristic variables, which are obtained using the local characteristic decomposition.
This is carried out as follows. We first use the notation

U =

(
ρ
V

)
, F(U)=

ρV
V2

2

, B(U)=

(
0 0
0 −C

)
,

and then introduce

Aj+ 1
2
=A

(
Ûj+ 1

2

)
−B
(
Ûj+ 1

2

)
=

(
V̂j+ 1

2
ρ̂j+ 1

2

0 Ĉj+ 1
2
+V̂j+ 1

2

)
,

where, as before, A= ∂F
∂U , and ρ̂j+ 1

2
and V̂j+ 1

2
stand for the following Roe averages:

ρ̂j+ 1
2
=

ρj+ρj+1

2
, V̂j+ 1

2
=

√
ρj Vj+

√
ρj+1Vj+1

√
ρj+

√
ρj+1

, Ĉj+ 1
2
=−Vmax

ρmax
ρ̂j+ 1

2
. (5.6)
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We can then compute the matrices

Rj+ 1
2
=

1
ρ̂j+ 1

2

Ĉj+ 1
2

0 1

, R−1
j+ 1

2
=

1 −
ρ̂j+ 1

2

Ĉj+ 1
2

0 1

,

such that R−1
j+ 1

2
Âj+ 1

2
Rj+ 1

2
is a diagonal matrix, and introduce the local characteristic vari-

ables in the neighborhood of x= xj+ 1
2
:

Γk =R−1
j+ 1

2
Uk, k= j−2,··· , j+3.

Finally, we apply the WENO-Z interpolation to these six values of Γ, obtain the point
values Γ±

j+ 1
2
, and then end up with

U±
j+ 1

2
=Rj+ 1

2
Γ±

j+ 1
2
.

Remark 5.1. The local characteristic decomposition for the conservative system (5.1), (5.3)
can be performed in a similar manner.

Equipped with the reconstructed values of ρ±
j+ 1

2
and V±

j+ 1
2
, we estimate the one-sided

local speeds of propagation as follows:

a+
j+ 1

2
=max

{
V+

j+ 1
2
,V−

j+ 1
2
,0
}

, a−
j+ 1

2
=min

{
V+

j+ 1
2
+C+

j+ 1
2
,V−

j+ 1
2
+C−

j+ 1
2
,0
}

,

where C±
j+ 1

2
=−Vmax

ρmax
ρ±

j+ 1
2
.

5.1.1 Accuracy test

First, we consider the following smooth initial data:

ρ(x,0)=

{
ρmax

(
1+ 1

10 sin4( π
24000 (x−8000))

)
, 8000< x<32000,

ρmax, otherwise,

V(x,0)=

{
Vmax

(
1+ 1

10 sin4( π
24000 (x−8000))

)
, 8000< x<32000,

Vmax, otherwise,

in the computational domain [0,40000] subject to free boundary conditions. We compute
the numerical solution until the final time t= 20s (at which the solution is still smooth;
see Fig. 1) using the 5-Order scheme with and without the added AAV (when it is added,
the parameter µ=100) on a sequence of uniform meshes with ∆x=5, 5/2, 5/4, and 5/8.
We then compute the L1-errors and estimate the experimental convergence rates using
the following Runge formulae, which are based on the solutions computed on the three



S. Chu et al. / Commun. Comput. Phys., 33 (2023), pp. 692-732 705

Figure 1: ARZ model, accuracy test: Density (ρ) profiles at t=0 and 20s computed by the New 5-Order scheme.

Table 1: Accuracy test: L1-errors and experimental convergence rates for the density (ρ).

∆x
∆t∼ (∆x) ∆t∼∆x5/3

Without AAV With AAV Without AAV With AAV
Error Rate Error Rate Error Rate Error Rate

5/4 1.57e-8 3.04 1.57e-8 3.04 4.72e-8 4.96 4.68e-8 4.95
5/8 1.92e-9 2.94 1.92e-9 2.94 1.52e-9 4.82 1.52e-9 4.82

consecutive uniform grids with the mesh sizes ∆x, 2∆x, and 4∆x and denoted by (·)∆x,
(·)2∆x, and (·)4∆x, respectively:

Error(∆x)≈ δ2
24

|δ12−δ24|
, Rate(∆x)≈ log2

(
δ24

δ12

)
.

Here, δ12 :=∥(·)∆x−(·)2∆x∥L1 and δ24 :=∥(·)2∆x−(·)4∆x∥L1 .
We first perform the computations using the timestep size ∆t∼∆x, which is selected

based on the stability requirement. The obtained results reported in Table 1 clearly
demonstrate that in this case, as expected according to (4.5), the temporal error domi-
nates and the convergence rate is the third one. We then select ∆t ∼ ∆x5/3, which bal-
ances the contribution of the temporal and spatial errors in (4.5), and then the fifth order
of accuracy is achieved; see Table 1. We would also like to stress that adding the AAV
practically does not affect the size of the error.

5.1.2 Riemann problems

We now consider several Riemann initial data of the form

U(x,0)=

{
UL, if x< x0,
UR, otherwise,

(5.7)

and begin with the illustration of importance of the new way the terms (Kxx)j+ 1
2

and
(Kxxxx)j+ 1

2
are computed. Recall that in Section 3, we have introduced a new finite-
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Table 2: ARZ model: Initial conditions for Tests 1 and 2.

Test ρL ρR VL VR x0

1 0.018 0.18 28.8 0 10000
2 0.18 0.018 0 28.8 10000

Figure 2: ARZ model: Density (ρ) profiles at t=200s computed by the New and Old 5-Order schemes for Tests
1 and 2.

difference approximations of these terms (New 5-Order Scheme), which is different com-
pared with the way these terms were evaluated in [12, §4] (Old 5-Order Scheme).

We consider Tests 1 and 2, which correspond to the data provided in Table 2. We
compute the corresponding solutions of the non-conservative system (5.4)-(5.5) on the
computational domain [0,20000] using 2000 uniform cells until the final time t=200s and
present the numerical results computed by the New and Old 5-Order Schemes in Fig. 2.
As one can see, in Test 1, the Old 5-Order Scheme produces an artificial plateau to the
right of the shock wave and in Test 2, the Old 5-Order Scheme generates non-physical
oscillations to the right of the rarefaction corner. Therefore, from here on, we will use
only the New 5-Order Scheme, which will be referred as the 5-Order Scheme.

We now apply the 5-Order and 2-Order Schemes to both the conservative (5.1), (5.3)
and non-conservative (5.4)-(5.5) systems. Our goal is to demonstrate that the “conser-
vative” and “non-conservative” results are about the same. To this end, we design ad-
ditional numerical tests according to the scenarios presented in Table 3, which cover a
comprehensive range of Riemann problems for different traffic regimes. In all of the tests,
a “non-equilibrium” state with V ̸=Ve(ρ) reaches an “equilibrium” state with V =Ve(ρ)
from behind. In all of the tests, λ2 consists of C2 waves which always travel downstream;
see, e.g., [42, 44] for more elaborations.

Tests 3–5 describe situations, where traffic states are faster in the upstream, so that λ1
produces H1 shocks. For both Tests 3 and 4, an intermediate states, which connects the H1
shocks on the left to C2 waves on the right. For Test 3, shock wave travels downstream
because of the free-flow traffic, whereas it travels upstream in Test 4, which describes
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Table 3: ARZ model: Initial conditions for Tests 3–8.

Test ρL ρR VL VR x0

3 0.3ρmax 0.3ρmax Ve(ρ)+5 Ve(ρ) 20000
4 0.7ρmax 0.3ρmax Ve(ρ)+5 Ve(ρ) 20000
5 0.4ρmax 0.7ρmax Ve(ρ)+5 Ve(ρ) 20000
6 0.3ρmax 0.3ρmax Ve(ρ)−5 Ve(ρ) 20000
7 0.7ρmax 0.7ρmax Ve(ρ)−5 Ve(ρ) 20000
8 0.7ρmax 0.4ρmax Ve(ρ)−5 Ve(ρ) 20000

a congestion condition. Test 5 includes a more complex scenario, where a strong H1
shock occurs because a near-capacity free-flow condition in the upstream meets a highly
congested downstream state.

Tests 6–8 describe situations, where traffic condition on the left-hand side of the initial
discontinuity is slower than that on the right-hand side. In all of these tests, λ1 generates
R1 acceleration waves, which are separated from the contact discontinuity by an inter-
mediate state. The rarefaction wave travels downstream in Test 6, due to the free-flow
condition, whereas it travels upstream in Test 7, due to the congested states. Test 9 in-
volves a more complex case, where due to transition from the congested to free-flow
states, the rarefaction wave travels both in the upstream and downstream directions.

From a numerical perspective, the tests in Table 3 present two challenging aspects
of the ARZ model. First, it is well-established that contact discontinuities are difficult
to capture and that high-order numerical schemes can still exhibit substantial diffusion
around such waves. Second, in the case of the ARZ model, high-order schemes (e.g.,
WENO-type schemes) often become oscillatory around intermediate states [44].

Let us now discuss the performance of the proposed A-WENO PCCU scheme in cap-
turing the solution structures for the tests in Table 3. To this end, we compute the solu-
tions on the computational domain [0,40000] using 200 uniform cells until the final time
t=200s. The numerical results obtained by solving the conservative (5.1), (5.3) and non-
conservative (5.4)-(5.5) systems are shown in Figs. 3 and 4 together with the reference
solution computed by 5-Order Scheme on a very fine mesh with 40000 uniform cells. As
one can see, the obtained “conservative” and “non-conservative” results are very close.
This demonstrates the efficacy of our proposed path-conservative approach in capturing
the solution structures in the Riemann problems.

Furthermore, in all of the tests, the proposed A-WENO PCCU scheme performs ro-
bustly and accurately. For instance, the 5-Order Scheme substantially suppresses the
numerical diffusion around contact discontinuities and achieves higher resolutions espe-
cially in Tests 3 and 6.

Another aspect worth discussing is how the proposed A-WENO PCCU scheme per-
forms in capturing the intermediate states. By visually comparing the “conservative”
and “non-conservative” results, one can spot some WENO-inherent oscillations in both
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Figure 3: ARZ model, Tests 3–5: Density (ρ) profiles at t= 200s computed by solving the conservative (left
column) and non-conservative (right column) systems.

cases. However, the observed oscillations are overall low-amplitude in all tests, and in-
terestingly, for some tests, such as Test 7, the use of the path-conservative technique in the
“non-conservative” computations suppresses the oscillations more effectively. The slight
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Figure 4: ARZ model, Tests 6–8: Same as in Fig. 3.

oscillations around the intermediate states further decrease in magnitude when the mesh
is refined; see the reference solutions. Note that we have deliberately selected a coarse
mesh size with ∆x = 200m for practical purposes. We also emphasize that we did not
need to use the AAV to suppress the numerical oscillations in any of the considered tests.
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Figure 5: ARZ model, Test 9: Same as in Figs. 3 and 4.

In order to further elaborate on this point, we consider another intricate numerical
example with the following initial data:

ρ(x,0)=


0.3ρmax, 0< x<8000,

0.8ρmax, 8000≤ x<
80000

3
,

0.3ρmax, otherwise,

V(x,0)=


0.3Ve(ρ)−5, 0< x<8000,

0.8Ve(ρ), 8000≤ x<
80000

3
,

0.3Ve(ρ)−5, otherwise.

This numerical example has been recently studied in [44], and the findings there sug-
gested that a combination of the WENO-Z reconstruction and HLL-type numerical fluxes
can produce strong oscillatory behavior near the intermediate states. Using the same pa-
rameter set-up, we study this numerical example using the same computational domain
[0,40000], take 200 uniform cells, and compute the solutions until the final time t=900s.
The obtained results, plotted in Fig. 5 together with the reference solutions computed
by the 5-Order Scheme using 40000 uniform cells, clearly demonstrate the robustness of
the “non-conservative” scheme, and also show that the 5-Order Scheme outperforms the
2-Order Scheme.

This section was primarily focused around showcasing the proposed A-WENO PCCU
scheme’s performance, where our benchmarking ARZ model was originally presented in
the conservative form and we have artificially rewritten it in the non-conservative way.
In the following, we test the PCCU numerical schemes on generally non-conservative
behavioral non-equilibrium models.

5.2 The behavioral 1998 Zhang model in the non-conservative form

In this section, we consider the behavioral non-equilibrium traffic model proposed by
Zhang in 1998 in [65]. This model has been derived from an improved car-following



S. Chu et al. / Commun. Comput. Phys., 33 (2023), pp. 692-732 711

relation, in which driver’s reaction delay is explicitly incorporated. The non-conservative
form of this model is 

ρt+(ρV)x =0,

Vt+
(V2

2

)
x
=−C2(ρ)

ρ
ρx+

1
τ
(Ve(ρ)−V),

(5.8)

where C(ρ)=ρV ′
e (ρ)≤0 is the so-called “sonic” velocity and τ is the relaxation time.

The 1998 Zhang model has two characteristic speeds:

λ1=V+C(ρ) and λ2=V−C(ρ).

From a theoretical perspective, the model admits the condition λ2>V, meaning that traf-
fic waves can reach vehicles from behind and affect their dynamics, and thereby violating
the anisotropy property of traffic flow; see, e.g., [14, 72]. However, this behavioral model
still has promising potentials with regard to complex aspects of traffic flow such as traffic
instabilities [66].

In [68], a generic conservative form has been proposed for the 1998 Zhang model:
ρt+(ρV)x =0,

Vt+
1
2
(
V2+F (ρ)

)
x =

1
τ

(
Ve(ρ)−V

)
,

(5.9)

where F ′(ρ)=ρ(V ′
e (ρ))

2. However, depending on the choice of Ve(ρ), the function F (ρ)
may not be specified in closed from, thereby hindering the application of conservative
numerical schemes.

Our primary focus in this section is to demonstrate the performance of the proposed
A-WENO PCCU scheme for this behavioral model. To this end, we restrict our con-
sideration to a simplified case by choosing the function Ve(ρ) as in (5.3) which results
in F (ρ) = C2(ρ). In this case, the conservative form in (5.9) is specified, and the solu-
tion structures are well-documented in [65]. Such a variant of the 1998 Zhang model
provides a good benchmark for evaluating our results obtained using the proposed path-
conservative approach. In addition, we set τ=∞ to study the model in the absence of the
relaxation term, primarily focusing on capturing the waves propagating with the charac-
teristic speeds. Note that the infinite relaxation time also makes our problem setting more
challenging from a numerical perspective since numerical studies on non-equilibrium
traffic flow models suggest that relaxation terms can have smoothing effects on spurious
oscillations that may arise around the intermediate states [44, 45].

We now discuss the specifications of the numerical tests. Similar to the previous case,
we choose ρmax = 0.18veh/m and Vmax = 30m/s, and design comprehensive numerical
tests, incorporating all major wave types arising in the solutions of Riemann problems.
With the adopted Ve(ρ) as in (5.3), both characteristic fields are genuinely nonlinear in the
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Table 4: The 1998 Zhang model: Initial conditions for Tests 1–4.

Test ρL ρR VL VR x0

1 0.5ρmax 0.1ρmax Ve(ρ) Ve(ρ)+5 20000

2 0.5ρmax 0.1ρmax Ve(ρ) Ve(ρ)−5 20000

3 0.3ρmax 0.7ρmax Ve(ρ) Ve(ρ)−5 20000

4 0.5ρmax 0.9ρmax Ve(ρ) Ve(ρ)+5 20000

entire solution domain, leading to the production of shock and rarefaction waves only.
Shock and rarefaction waves corresponding to λ1 (H1 and R1, respectively) arise when
drivers have to adapt their speed with respect to the traffic conditions ahead. In contrast,
shock and rarefaction waves corresponding to λ2 (H2 and R2, respectively) reach vehicles
from behind and force them to speed up or slow down, respectively. In [68], an analytical
framework that divided the ρV-phase plane into four regions associated with each wave
type has been developed. Following this framework, we design a comprehensive set ob
numerical tests presented in Table 4.

All of the tests presented in Table 4 describe situations, where “equilibrium” traffic on
the left side of the initial discontinuity meets a “non-equilibrium” state on the right side.
In all of the cases, one intermediate state arises. In Tests 1 and 2, traffic is heavier in the
upstream, and thus λ1 produces R1 waves as drivers accelerate to adapt their speed to
the lighter traffic ahead. However, the wave types associated with λ2 differ in the Tests
1 and 2. In Test 1, the downstream traffic speed is faster than the “equilibrium” one, and
thereby λ2 produces R2 waves and causes the downstream vehicles to slow down. In
Test 2, the downstream traffic speed is slower than the “equilibrium” one, and therefore
λ2 produces H2 shocks, forcing the downstream vehicles to speed up. Similarly, in both
Tests 3 and 4, traffic is lighter in the upstream, and therefore λ1 produces H1 shocks for
vehicles in the upstream, causing them to sharply decelerate. For Test 3, traffic is slower
than the “equilibrium” speed in the downstream, and therefore λ2 produces R2 waves
forcing the downstream vehicles to slow down, whereas λ2 produces H2 waves in Test
4 and force drivers in the downstream to speed up their slower than the “equilibrium”
speed.

We emphasize that R2 and H2 waves in the 1998 Zhang model are only occasionally
observable in real-world traffic [72]. However, such waves are challenging and interest-
ing cases from a numerical perspective, which is the focus of this paper.

Let us now provide some specifications on the numerical treatments of the state vari-
ables. As before, we apply the WENO-Z interpolation procedure to the local characteris-
tic variables for evaluating the point values U±

j+ 1
2
=(ρ±

j+ 1
2
,V±

j+ 1
2
)⊤. We use the same local

characteristic decomposition procedure described in Example 1 but with the different
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Aj+ 1
2
, Rj+ 1

2
and R−1

j+ 1
2
:

Aj+ 1
2
=


V̂j+ 1

2
ρ̂j+ 1

2

Ĉ2
j+ 1

2

ρ̂j+ 1
2

V̂j+ 1
2

, Rj+ 1
2
=

 ρ̂j+ 1
2

Ĉj+ 1
2

−
ρ̂j+ 1

2

Ĉj+ 1
2

1 1

, R−1
j+ 1

2
=


Ĉj+ 1

2

2ρ̂j+ 1
2

1
2

−
Ĉ

j+ 1
2

2ρ̂
j+ 1

2

1
2

,

where ρ̂j+ 1
2
, V̂j+ 1

2
and Ĉj+ 1

2
are given by (5.6).

Equipped with the reconstructed values of ρ±
j+ 1

2
and V±

j+ 1
2
, the one-sided local speeds

of propagation can be evaluated as follows:

a+
j+ 1

2
=max

{
V+

j+ 1
2
−C+

j+ 1
2
,V−

j+ 1
2
−C−

j+ 1
2
,0
}

, a−
j+ 1

2
=min

{
V+

j+ 1
2
+C+

j+ 1
2
,V−

j+ 1
2
+C−

j+ 1
2
,0
}

.

We now apply the 5-Order and 2-Order Schemes to both the non-conservative (5.8) and
conservative (5.9) systems subject to the Riemann initial data (5.7) with the parameters
corresponding to Tests 1–4; see Table 4. We compute the numerical solutions on the
computational domain [0,40000] using 200 uniform cells until the final time t=200s. The
numerical results are presented in Fig. 6 together with the reference solution computed by
5-Order Scheme on a very fine mesh with 40000 uniform cells. These results demonstrate
the robust performance of the proposed PCCU schemes in several regards. First, the
structure of the solutions and arising waves are captured correctly. As one can clearly
see, the “conservative” and “non-conservative” results are almost identical and the 5-
Order Scheme achieves higher resolution compared with the 2-Order Scheme, especially
in Test 1. One can also observe that the proposed 5-Order Scheme performs very sharply
near the H1 and H2 shocks, and it captures the intermediate states quite accurately. As
in the case of the ARZ model, one can observe small WENO-type oscillations only and
hence there is no need to add the AAV for the 1998 Zhang model as well.

5.3 The non-conservative behavioral 2003 Zhang model

In the previous sections, we have tested the proposed PCCU schemes on two non-
equilibrium traffic flow models, for which the conservative form was known and analytic
solutions were well-documented [42, 68]. By considering such models as benchmarks,
we have demonstrated that the proposed A-WENO PCCU scheme performs robustly re-
garding capturing solution structures, achieving sharp resolution of discontinuities, and
suppressing the oscillations around intermediate states.

In this section, we consider a more complicated behavioral non-equilibrium model
proposed by Zhang in 2003 in [71]. This model is derived from a car-following relation
in which driver memory is explicitly incorporated. The resulting continuum 2003 Zhang
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Figure 6: The 1998 Zhang model: Density (ρ) profiles at t=200s computed by solving the conservative (left
column) and non-conservative (right column) systems.
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model is generically non-conservative and it reads as
ρt+(ρV)x =0,

Vt+
(V2

2

)
x
=−2βC(ρ)Vx−

C2(ρ)

ρ
ρx+

1
τ

(
Ve(ρ)−V

)
+2βτC2(ρ)Vxx.

(5.10)

Here, C(ρ)=ρV ′
e (ρ), β is a constant related to the “driver memory”, and τ is the relaxation

time. It is easy to verify that the characteristic speeds of the system (5.10) are

λ1=V+
(
β+
√

1+β2
)
C(ρ) and λ2=V+

(
β−
√

1+β2
)
C(ρ). (5.11)

Except for very simplified cases (for instance, when Ve(ρ) is linear), the model (5.10)
cannot be rewritten in the conservative form. However, linear Ve(ρ) is not realistic and
in this section, we consider a robust and well-defined Ve(ρ) given by (see [18]):

Ve(ρ)=
Cjam

ρ̃

[
1+(a−1)ρ̃−

(
(aρ̃)θ+(1− ρ̃)θ

) 1
θ

]
, (5.12)

where ρ̃=ρ/ρmax, a=Vmax/Cjam, Cjam is the magnitude of the propagation velocity Ve(ρ)+
C(ρ) under the jam condition ρ = ρmax, and θ > 1 is a shape parameter. In all of the
numerical tests below, we choose ρmax = 0.18veh/m, Vmax = 30m/s, Cjam = 7m/s from a
typical range. The parameter θ will be selected based on our analytical investigations of
this model.

The functional form in (5.12) has numerous promising properties with respect to be-
havioral aspects of real-world traffic and empirical observations (see, e.g., [43] for more
elaborations), which can also make the traffic model (5.10) behaviorally more relevant.
However, the complicated nonlinear structure of such Ve(ρ) results in the loss of the con-
servative form for the model (5.10).

To the best of our knowledge, the 2003 Zhang model has never been studied numer-
ically or analytically. In order to investigate the structure of characteristic waves, we
consider the right eigenvectors corresponding to the characteristic speeds (5.11). It is
easy to check that they are

r1(ρ,V)=

(
1,
(
β+
√

1+β2
)C(ρ)

ρ

)⊤
and r2(ρ,V)=

(
1,
(
β−
√

1+β2
)C(ρ)

ρ

)⊤
. (5.13)

Next, from (5.11) and (5.13), we compute

∇λ1 ·r1=
(
β+
√

1+β2
)
η(ρ), ∇λ2 ·r2=

(
β−
√

1+β2
)
η(ρ), η(ρ) :=C′(ρ)+

C(ρ)
ρ

, (5.14)

which imply that both characteristic fields are genuinely nonlinear since η(ρ) ̸= 0 for all
ρ∈(0,ρmax) and for any finite θ. We plot the function η(ρ) for θ=3,6,9,··· ,30 in Fig. 7. As
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Figure 7: η(ρ)=C′(ρ)+C(ρ)/ρ for different θ.

Table 5: The 2003 Zhang model: Initial conditions for Tests 1–4.

Test ρL ρR VL VR x0

1 0.2ρmax 0.45ρmax Ve(ρ) Ve(ρ)−5 20000
2 0.2ρmax 0.8ρmax Ve(ρ) Ve(ρ)+5 20000
3 0.9ρmax 0.1ρmax Ve(ρ) Ve(ρ)+5 20000
4 0.9ρmax 0.1ρmax Ve(ρ) Ve(ρ)−5 20000

one can see, when θ is large the values of |η| may be very small outside a certain interval
(ρ1,ρ2). For instance, for θ=15, |η(ρ)|<10−8 for ρ<ρ1≈0.0057 and ρ>ρ2≈0.0616. This
means that for any practical purposes the solution of the 2003 Zhang model will behave
like a solution of a non-strictly hyperbolic system in the areas where |η| rapidly decays.
In the numerical experiments presented below, we use θ=3, for which |η(ρ)| is not small
near ρ=0 and decays only for larger values of ρ.

We design several challenging numerical tests which are presented in Table 5. Similar
to the examples considered in previous sections, in all of the cases, “equilibrium” traffic
on the left of the initial discontinuity meets a “non-equilibrium” state on the right. How-
ever, for the 2003 Zhang model, Riemann solutions depend on several factors (besides
the structure of λ1 and λ2) such as the choice of parameter β as well as the diffusion and
relaxation terms.

Case A. In order to investigate the capability of the proposed A-WENO PCCU scheme
to accurately capture the waves arising due to the characteristic speeds, we first consider
the system (5.10) in the absence of diffusion and relaxation terms. In this case, the system
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reads as 
ρt+(ρV)x =0,

Vt+
(V2

2

)
x
=−2βC(ρ)Vx−

C2(ρ)

ρ
ρx.

The point values U±
j+ 1

2
=(ρ±

j+ 1
2
,V±

j+ 1
2
)⊤ will be obtained using the local characteristic de-

composition. To this end, we specify Aj+ 1
2
, Rj+ 1

2
and R−1

j+ 1
2

as

Aj+ 1
2
=


V̂j+ 1

2
ρ̂j+ 1

2

Ĉ2
j+ 1

2

ρ̂j+ 1
2

V̂j+ 1
2
+2βĈj+ 1
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, Rj+ 1
2
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 ρ̂j+ 1
2

Ĉj+ 1
2
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1+β2−β

)
−

ρ̂j+ 1
2

Ĉj+ 1
2

(√
1+β2+β

)
1 1

,

R−1
j+ 1

2
=

1
2
√

1+β2


Ĉj+ 1

2

ρ̂j+ 1
2

√
1+β2+β

−
Ĉj+ 1

2

ρ̂j+ 1
2

√
1+β2−β

.

The one-sided local speeds of propagation are estimated by

a+
j+ 1

2
=max

{
V+

j+ 1
2
+
(
β−
√

1+β2
)
C+

j+ 1
2
,V−

j+ 1
2
+
(
β−
√

1+β2
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C−

j+ 1
2
,0
}

,

a−
j+ 1

2
=min

{
V+

j+ 1
2
+
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β+
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)
C+

j+ 1
2
,V−
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2
+
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√

1+β2
)
C−

j+ 1
2
,0
}

,

where C±
j+ 1

2
=ρ±

j+ 1
2
V ′

e
(
ρ±

j+ 1
2

)
.

Next, we numerically solve the system (5.10) using the Riemann initial data (5.7) for
different tests in Table 5. The solutions are computed using both the 5-Order and 2-Order
Schemes on the computational domain [0,40000] until the final time t=200s. We first focus
on Tests 1 and 2, which are especially challenging regarding the intermediate states. In
Figs. 8 and 9, we present the numerical results computed by the 5-Order Scheme using
200, 400 and 800 uniform cells with β=0 and 0.2. As one can see, when no AAV is added,
that is, when µ=0 in (4.1), the computed solutions contain large oscillations, which do not
seem to decay when the mesh is refined. In order to suppress these oscillations, we add
the AAV, that is, we take µ>0 in (4.1). As in [9,34], the values of µ are tuned on the coarse
mesh with 200 cells and then the same values are used on finer meshes. In Test 1, we take
µ=3000 and 1500 for β=0 and 0.2, respectively. In Test 2, the corresponding values of µ
are 1500 and 800. One can observe that the use of the AAV helps to significantly reduce
the oscillations, whose magnitude substantially decreases when the mesh is refined. We
note that in Tests 3 and 4, there is no need to add the AAV as rarefaction waves are
dominant and shocks are not as strong.
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Figure 8: The 2003 Zhang model, Case A, Test 1: Density (ρ) profiles at t= 200s computed by the 5-Order
Scheme with the AAV parameter µ (if µ = 0 then the AAV is switched off). The computations have been
conducted for β=0 (left column) and 0.2 (right column) on three different uniform meshes with 200 (top row),
400 (middle row) and 800 (bottom row) cells.

We then compute the solutions of Tests 1–4 with β = 0, 0.2, 0.6 and 1 by the 5-
Order Scheme using 200 uniform cells and present the obtained results (both ρ and V)
in Figs. 10-13 together with the corresponding reference solutions computed by the 5-
Order Scheme on a finer mesh with 4000 uniform cells. As one can see, the proposed
scheme achieves high resolution in all of the tests.



S. Chu et al. / Commun. Comput. Phys., 33 (2023), pp. 692-732 719

Figure 9: The 2003 Zhang model, Case A, Test 2: Same as in Fig. 8.

We now examine the obtained numerical results based on an analytical considera-
tions. According to the eigenstructure given in (5.11), (5.13) and (5.14), one expects the
waves that correspond to λ1 and λ2 (1- and 2-waves) to be both shock and rarefaction
waves for relatively small values of ρ, that is, in the area of “effective” support of η(ρ),
while only shock waves are expected to arise when ρ is large. We consider the results for
both density and velocity profiles at t=200s; see Figs. 10-13.
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Figure 10: The 2003 Zhang model, Case A, Test 1: Density (ρ) and velocity (V) profiles at t=200s computed
by the 5-Order Scheme. The computations have been conducted for β= 0 (first row), 0.2 (second row), 0.6
(third row) and 1 (fourth row).
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Figure 11: The 2003 Zhang model, Case A, Test 2: Same as in Fig. 10.
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Figure 12: The 2003 Zhang model, Case A, Test 3: Same as in Figs. 10 and 11.
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Figure 13: The 2003 Zhang model, Case A, Test 4: Same as in Figs. 10-12.
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In Tests 1 and 2, traffic condition is initially heavier in the downstream (x> x0), and
the 1-wave is a shock wave that travels backward as the upstream vehicles decelerate.
In contrast, in both tests, the condition |η(ρR)|<<1 applies for the initial Riemann data
(see Fig. 7), and the 2-wave is a shock that travels forward. In both Tests 1 and 2, only
one intermediate state arises between the two shocks. We note that regardless of the
choice of β, the 1-wave is always a deceleration shock, referred to as H1d. However, the
2-shocks are not of the same type. In Test 1, the value of β affects the intermediate states
and as well as the type of the 2-shocks. For instance, for β=0 and 0.2, the traffic density
at the intermediate state becomes greater than that of downstream, where the 2-wave
is an acceleration shock (referred to as H2a shock) that causes the downstream vehicles
to speed up. In contrast, for the larger β values (β = 0.6 and β = 1), the intermediate
state occurs at a density smaller than that of the downstream. This observation can be
explained by the fact that with an increase in β, the magnitude of propagation speed
(β+

√
1+β2)|C(ρ)| in the moving coordinate increases, suggesting that drivers respond

to traffic condition ahead more quickly. As a result, 1-shocks propagate backward faster,
and the intermediate traffic becomes less congested and faster than the downstream one.
In these cases, the 2-shocks are deceleration shocks (referred to as H2d), which force the
downstream vehicles to slow down. Similar points apply to Test 2 regarding the impact of
β on the intermediate states. However, in Test 2, downstream traffic is highly congested
while travels faster than the “equilibrium” speed. In this case, the intermediate state
always occurs at a density smaller than that of the downstream. With an increase in β,
the density in the intermediate state decreases and 1-shocks propagate backward faster.
We note that in Test 2, 2-shocks are deceleration shocks (H2d) for all β; see Fig. 11.

We now discuss the numerical results for Tests 3 and 4 from a physical perspective.
In both cases, traffic condition is highly congested in the upstream (x<x0) as |η(ρL)|≪1,
whereas on the right side, traffic density is very light. In both cases, the 1-wave is a
composite acceleration wave as the upstream vehicles adapt their speed to that of down-
stream. This wave consists of a shock (referred to as H1a) in larger density ranges, joint
with a rarefaction (referred to as R1a) in smaller density ranges. In Tests 3 and 4, inter-
mediate states arise between the 1- and 2-waves. The results show that the parameter β
affects the 2-waves more significantly. To elaborate, we note that in Test 3, β= 0 results
in a 2-rarefaction deceleration wave (referred to as R2d) that causes the downstream ve-
hicles, which are traveling faster than the “equilibrium” speed, to slow down. However,
as β increases, the acceleration rate increases within the R1a waves, and thereby causing
the intermediate states to be faster than the downstream states. Consequently, the 2-
waves are acceleration shocks (referred to as H2a), which force the downstream vehicles
to speed up. Similar points apply to the results for Test 4, but we note that regardless of
β, the 2-waves are always acceleration shocks (H2a). This is because in the initial down-
stream traffic speed is slower then “equilibrium” one. Finally, one observes that in both
Tests 3 and 4, with an increase in β, the magnitude of discontinuity increases for the H2a
shocks.
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Case B. We now consider the system (5.10) and demonstrate the ability of the proposed
5-Order Scheme to handle the relaxation and nonlinear diffusion terms. In our numeri-
cal example, we set the relaxation time as τ=40s from a typical range. We compute the
numerical solutions on the computational domain [0,40000] using 200 uniform cells until
the final time t = 200s. The numerical results of the 5-Order scheme for Tests 2 and 3
from Table 5 are shown in Fig. 14 together with the reference solution computed by the
5-Order Scheme on a finer mesh with 4000 uniform cells. As one can see, the proposed
5-Order scheme can achieve high resolution even when a coarse mesh is used. The ob-
tained results are non-oscillatory since both the diffusion and relaxation terms can have
smoothing effects and suppress the inherent numerical oscillations. Therefore, there is
no need to add the AAV in such cases.

6 Conclusions

Non-equilibrium continuum traffic flow models describe the spatio-temporal evolu-
tion of traffic states with the help of hyperbolic systems, in which separate PDEs are
employed for flow-continuity and speed adaptation equations. While many existing
non-equilibrium models can be presented in the conservative form, behavioral non-
equilibrium ones derived from car-following models are often non-conservative. Mean-
while, conventional approaches for analytical and numerical investigations of continuum
traffic flow models heavily rely on the presence of conservative form. As a result, lack of
conservation property has remained an obstacle for both numerical solution and further
development of behavioral non-equilibrium models.

In order to overcome this obstacle, we have developed a new fifth-order finite-
difference alternative weighted essentially non-oscillatory (A-WENO) scheme based on
the path-conservative central-upwind (PCCU) method to solve non-equilibrium traffic
models based on their non-conservative form. We have first applied the second-order
finite-volume (FV) PCCU scheme to the traffic flow models, and then extended it to the
fifth order of accuracy using the finite-difference A-WENO framework. We have demon-
strated the scheme’s performance for three non-equilibrium traffic models, including the
Aw-Rascle-Zhang model, the 1998 Zhang behavioral model, and the 2003 Zhang non-
conservative behavioral model. We have verified the proposed scheme’s robustness re-
garding capturing the overall solution, sharpness and accuracy, and capability of sup-
pressing the inherent numerical oscillations. The scheme has also been compared with
the corresponding second-order FV PCCU scheme. In order to prevent appearance of
large magnitude oscillations, the adaptive artificial viscosity (AAV) has been added to
the proposed A-WENO PCCU scheme in some of the numerical examples. The AAV is
made to be proportional to the weak local residual.

The proposed A-WENO PCCU scheme paves the way for developing new and bet-
ter behavioral non-equilibrium traffic models. In contrast to many purely physical sys-
tems, traffic flow involves human drivers, and numerous empirical studies have estab-
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Figure 14: The 2003 Zhang model, Case B: Density (ρ) and velocity (V) profiles at t=200s computed by the
5-Order Scheme. The computations have been conducted for β= 0 (first row), 0.2 (second row), 0.6 (third
row) and 1 (fourth row).
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lished profound linkages between such human factors and complex traffic phenomena,
underscoring the need to develop new and better behavioral models that can adequately
capture the impacts of complex human factors on traffic flow dynamics. Recently, a unifi-
able framework has been developed in [30] to derive non-equilibrium continuum models
from car-following models, which can be used as a guideline to develop behavioral con-
tinuum models with respect to human psychological factors. However, such a practice is
likely to result in the loss of the conservative form with the associated inherent numerical
difficulties that perhaps have hindered the development of such behavioral models until
very recently. In this paper, we have shown that such difficulties can be overcome by the
proposed A-WENO PCCU scheme.

There is a couple of future directions to this work. First, there is a need to couple the
proposed A-WENO PCCU scheme with more robust schemes for source terms near on-
ramp areas. Meanwhile, we are currently implementing the proposed A-WENO PCCU
scheme to solve the Riemann problem for the novel behavioral continuum model (non-
equilibrium traffic model based on risk allostasis theory, that is, NET-RAT), recently de-
veloped in [46].
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A Fifth-order WENO-Z interpolant

In this appendix, we briefly describe the fifth-order WENO-Z interpolant from [12,28,41,
63]. Assume that the point values Wj of a certain quantity W at the grid points x= xj are
available. We now show how to obtain an interpolated value of W at x=xj+ 1

2
−, denoted

by W−
j+ 1

2
. The right-sided value W+

j+ 1
2

can then be obtained in the mirror-symmetric way.

The value W−
j+ 1

2
is computed using a weighted average of the three parabolic inter-

polants P0(x), P1(x) and P2(x) obtained using the stencils [xj−2,xj−1,xj], [xj−1,xj,xj+1]
and [xj,xj+1,xj+2], respectively:

W−
j+ 1

2
=

2∑
k=0

ωkPk(xj+ 1
2
), (A.1)

where

P0(xj+ 1
2
)=

3
8

Wj−2−
5
4

Wj−1+
15
8

Wj,
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P1(xj+ 1
2
)=−1

8
Wj−1+

3
4

Wj+
3
8

Wj+1,

P2(xj+ 1
2
)=

3
8

Wj+
3
4

Wj+1−
1
8

Wj+2.

The weights ωk are computed by

ωk =
αk

α0+α1+α2
, αk =dk

[
1+
(

τ5

βk+ε

)p]
, τ5= |β2−β0|, (A.2)

with d0=
1

16 , d1=
5
8 , d2=

5
16 , and the smoothness indicators βk in (A.2) for the corresponding

parabolic interpolants Pk(x) are defined by

βk =
2∑

ℓ=1

(∆x)2ℓ−1

x
j+ 1

2∫
x

j− 1
2

(
∂ℓPk

∂xℓ

)2

dx, k=0,1,2. (A.3)

Evaluating the integrals in (A.3), we obtain

β0=
13
12
(
Wj−2−2Wj−1+Wj

)2
+

1
4
(
Wj−2−4Wj−1+3Wj

)2,

β1=
13
12
(
Wj−1−2Wj+Wj+1

)2
+

1
4
(
Wj−1−Wj+1

)2,

β2=
13
12
(
Wj−2Wj+1+Wj+2

)2
+

1
4
(
3Wj−4Wj+1+Wj+2

)2.

(A.4)

Finally, in all of the numerical examples reported in Section 5, we have used p= 2 and
ε=10−12.
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