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Abstract We introduce a new fifth-order A-WENO scheme based on the low-
dissipation central-upwind numerical fluxes recently proposed in [A. Kurganov and
R. Xin, preprint]. We apply the developed scheme to the one- and two-dimensional
Euler equations of gas dynamics and illustrate its performance on a variety of exam-
ples. The obtained numerical results clearly demonstrate that the proposed A-WENO
scheme is as robust and at the same time more accurate than the existing A-WENO
schemes, which are based on alternative central-upwind fluxes.

1 Introduction

This paper focuses on the development of high-order finite-difference (FD) schemes
for hyperbolic systems of conservation laws. We consider one-dimensional (1-D),

[C + L([)G = 0, (1)

and two-dimensional (2-D),

[C + L([)G + M ([)H = 0, (2)
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systems. Here, G and H are spatial variables, C is the time, [ ∈ R3 is a vector of
unknowns, and L and M are the G- and H-flux functions.

It is well-known that solutions of (1) and (2) may develop very complicated
structures that may include shock, rarefaction, and contact waves even when the
initial data are infinitely smooth. As one has to compute nonsmooth weak solutions
of (1) and (2), these systems should be rewritten in an equivalent integral form and
then it is natural to evolve the integral quantities (cell averages of [ over the spatial
mesh cells) using finite-volume (FV) methods, which form one of the most popular
classes of numerical methods for hyperbolic systems of conservation laws; see, e.g.,
the monographs [10, 19, 31]. There are two types of FV methods: upwind or central
ones; see, e.g., [13]. While upwind schemes typically contain smaller amount of
numerical dissipation than the central schemes, central schemes are more robust and
often can be applied to a variety of hyperbolic systems in a “black-box” manner.
In order to reduce the amount of numerical dissipation present in central schemes,
a new class of FV schemes—central-upwind (CU) schemes—was introduced in
[16, 17]. These schemes enjoy all of the advantages of the central schemes, while
incorporating a certain upwinding information to reduce the numerical dissipation,
which was further reduced in [8, 14] and very recently in [3] and [18]. Development
of a higher-order extension of the latter CU scheme is the main goal of the current
paper.

Many of the FV methods, including the CU schemes, admit a semi-discrete
form, which is based on the numerical fluxes that need to be evaluated along the
cell interfaces. Typically, the numerical fluxes depend on the left- and right-sided
point values of the approximate solution, which are obtained using a global (in
space) piecewise polynomial interpolant, reconstructed out of the available cell
averages. The reconstruction has to be sufficiently accurate and non-oscillatory. The
latter property is ensured using a certain nonlinear limiting mechanism. Second-
order FV methods employ second-order piecewise linear reconstructions, which are
based on slope limiters; see, e.g., [10, 21, 19, 31] and references therein. Higher-
order FV methods require higher-order reconstructions, which are, especially in the
multidimensional case, rather complicated and also computationally expensive. For
several existing high-order FV methods, we refer the reader to [1, 6, 20, 27, 28] and
references therein.

High-order FD schemes offer a simple and less computationally expensive alterna-
tive to the FV methods. Weighted essentially non-oscillatory (WENO) FD schemes
based on 1-DWENO interpolations constructed in every spatial direction are among
the most popular high-order FD schemes. The first WENO FD scheme was proposed
in [11]; also see [2, 4, 29, 27, 28] and reference therein. However, these schemes are
based on a quite diffusive flux splitting required to stabilize them, and this may affect
the quality of the computed solution. A way to overcome the necessity of using any
flux splitting was proposed in [12], where alternative WENO (A-WENO) schemes
were introduced.A-WENOschemes employ particularly accurate and robustWENO-
Z interpolations (see [5, 12, 23, 34]), applied to the characteristic variables using the
local characteristic decomposition (LCD) technique (see, e.g., [5, 12, 23, 25, 28, 34])
and achieve very high resolution; see, e.g., [32, 33, 34].
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We note that a common strategy often followed while WENO and A-WENO
schemes are implemented is based on the fact that high-order WENO reconstruc-
tions/interpolations would ensure high accuracy even when the numerical flux is
quite dissipative. Therefore, the A-WENO schemes in [5, 23, 34] employed the
simplest—yet very robust—central (local Lax-Friedrichs, Rusanov) flux, while in
[12] several upwind fluxes have been tested as well. In our recent works [32, 33], we
explored a possibility of using less dissipative central and CU fluxes in the context
of A-WENO schemes.

In this paper, we develop a new fifth-order A-WENO scheme based on the recently
proposed low-dissipation CU (LDCU) numerical fluxes, which have substantially
lower amount of numerical dissipation comparedwith their predecessors. The LDCU
numerical fluxes are based on an extremely sharp “built-in” anti-diffusion terms; see
the derivation of the semi-discrete LDCU schemes in [18]. We implement the new
fifth-order A-WENO scheme for the 1-D and 2-D Euler equations of gas dynamics
and demonstrate that the use of the LDCU fluxes leads to an improved resolution
without sacrificing the robustness.

2 Fifth-Order A-WENO Schemes

We present the new 1-D and 2-D A-WENO schemes. As the novel feature of the
proposed schemes is related to the incorporation of the recently proposed LDCU
fluxes into the A-WENO framework, we give a very brief description only.
One-Dimensional Schemes.Assume that the computational domain is covered with
uniform cells [G 9− 1

2
, G 9+ 1

2
] of size G 9+ 1

2
−G 9− 1

2
≡ ΔG centered at G 9 = (G 9− 1

2
+G 9+ 1

2
)/2

and that the point values[ 9 (C) are available at a certain time C ≥ 0. From here on, we
suppress the time-dependence of all of the indexed quantities for the sake of brevity.

According to the A-WENO approach introduced in [12], the numerical solution
of (1) is evolved in time by solving the following system of ODEs:

d[ 9

dC
= −

F 9+ 1
2
− F 9− 1

2

ΔG
,

where F 9+ 1
2
are fifth-order accurate numerical fluxes given by

F 9+ 1
2
= F

FV
9+ 1

2
− (ΔG)

2

24
(LGG) 9+ 1

2
+ 7(ΔG)4

5760
(LGGGG) 9+ 1

2
.

Here,FFV
9+ 1

2
= F

FV
9+ 1

2

(
[−

9+ 1
2
,[+

9+ 1
2

)
is a FV numerical flux,[−

9+ 1
2
and[+

9+ 1
2
are the left-

and right-sided values of[ at G = G 9+ 1
2
computed using an appropriate WENO-type

interpolation. In the numerical results reported in Sect. 3,[±
9+ 1

2
have been computed

using the fifth-order WENO-Z interpolation applied to the local characteristic vari-
ables (for details, see, e.g., [5, 12, 23, 34]). Finally, (LGG) 9+ 1

2
and (LGGGG) 9+ 1

2
are the
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higher-order correction terms computed by the fourth- and second-order accurate
finite differences, respectively:

(LGG) 9+ 1
2
=
−5L9−2 + 39L9−1 − 34L9 − 34L9+1 + 39L9+2 − 5L9+3

48(ΔG)2
,

(LGGGG) 9+ 1
2
=

L9−2 − 3L9−1 + 2L9 + 2L9+1 − 3L9+2 + L9+3

2(ΔG)4
,

(3)

where L9 := L([ 9 ).
We introduce a new A-WENO scheme based on the LDCU numerical fluxes

F
FV
9+ 1

2
, proposed in [18]. In Sect. 3, we compare the performance of the new schemes

with the A-WENO scheme based on the CU Rankine-Hugoniot (CURH) flux from
[8], which has already been incorporated into the A-WENO framework in [33]. A
description of these CU numerical fluxes is omitted for the sake of brevity.
Two-Dimensional Schemes. 2-D fifth-order A-WENO schemes read as

d[ 9 ,:

dC
= −

F 9+ 1
2 ,:
− F 9− 1

2 ,:

ΔG
−
G 9 ,:+ 1

2
−G 9 ,:− 1

2

ΔH
. (4)

Here, [ 9 ,: is a point value of the computed solution at (G, H) = (G 9 , H: ), where
(G 9 , H: ) is a center of the uniform cell [G 9− 1

2
, G 9+ 1

2
]×[H:− 1

2
, H:+ 1

2
] with G 9+ 1

2
−G 9− 1

2
≡

ΔG and H:+ 1
2
− H:− 1

2
≡ ΔH for all 9 , : . In (4), F 9+ 1

2 ,:
and G 9 ,:+ 1

2
are fifth-order

accurate numerical fluxes given by

F 9+ 1
2 ,:

= F
FV
9+ 1

2 ,:
− (ΔG)

2

24
(LGG) 9+ 1

2 ,:
+ 7(ΔG)4

5760
(LGGGG) 9+ 1

2 ,:
,

G 9 ,:+ 1
2
= G

FV
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2
− (ΔH)

2

24
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2
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5760
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2
,

(5)

where F
FV
9+ 1

2 ,:
= F

FV
9+ 1

2 ,:

(
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)
and G

FV
9 ,:+ 1

2
= G

FV
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2

(
[−

9 ,:+ 1
2
,[+
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2

)
are numerical fluxes with [±

9+ 1
2 ,:

and [±
9 ,:+ 1

2
being the one-sided values of [ at

(G, H) = (G 9+ 1
2
± 0, H: ) and (G, H) = (G 9 , H:+ 1

2
± 0), respectively. In the numerical

results reported in Sect. 3, we have computed these point values using the 1-D
fifth-order WENO-Z interpolation applied in the G- and H-directions. Finally, the
terms (LGG) 9+ 1

2 ,:
, (LGGGG) 9+ 1

2 ,:
, (MHH) 9 ,:+ 1

2
, and (MHHHH) 9 ,:+ 1

2
in (5) are direct

“dimension-by-dimension” extensions of the higher-order correction terms (3).
As in the 1-D case, we introduce a new A-WENO scheme by implementing the

LDCU G- and H-directional numerical fluxes FFV
9+ 1

2 ,:
and GFV

9 ,:+ 1
2
in (5).
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3 Numerical Examples

We test the new LDCU-based A-WENO schemes and compare their performance
with the performance of the A-WENO schemes based on the CURH numerical
fluxes (the studied schemes will be referred to as the LDCU and CURH A-WENO
schemes). We consider the 1-D and 2-D Euler equations of gas dynamics, which in
the 2-D case read as

dC + (dD)G + (d{)H = 0,

(dD)C + (dD2 + ?)G + (dD{)H = 0,

(d{)C + (dD{)G + (d{2 + ?)H = 0,
�C + [D(� + ?)]G + [{(� + ?)]H = 0,

(6)

where d is the density, D and { are the G- and H-velocities, respectively, ? is the
pressure, and � is the total energy. The system is completed through the equation
of state ? = (W − 1)

[
� − d

2 (D
2 + {2)

]
, where W represents the specific heat ratio.

In Examples 1 and 2, we will consider the 1-D version of the system (6), which is
obtained by assuming that all of the quantities in (6) are independent of H and { ≡ 0.

In examples 1–5, we take W = 1.4, while in Example 6, we set W = 5/3. In all of
the examples, the time evolution is carried out using the three-stage third-order SSP
Runge-Kutta method (see, e.g., [9]) with the CFL number 0.45.

Example 1—Shock-EntropyWave Interaction Problem. In this example, we con-
sider the shock-entropy problem from [29]. The initial conditions,

(d, D, ?) (G, 0) =
{
(1.51695, 0.523346, 1.805), G < −4.5,
(1 + 0.1 sin(20G), 0, 1), G > −4.5,

correspond to a forward-facing shock wave of Mach 1.1 interacting with high-
frequency density perturbations.

We apply the two studied A-WENO schemes to this problem and compute the
solutions until the final time C = 5 in the computational domain [−10, 5] on a uniform
mesh with ΔG = 3/80 subject to the free boundary conditions. The numerical results
are shown in Fig. 1 along with the reference solution computed by the CURH A-
WENO scheme on a much finer mesh with ΔG = 3/1600. One can observe that the
LDCU A-WENO scheme produces slightly more accurate results compared to those
obtained by the CURH A-WENO scheme.

Example 2—Stationary ContactWave and Traveling Shock and Rarefaction. In
the last 1-D example taken from [14], the Riemann initial data,

(d, D, ?) (G, 0) =
{
(1,−19.59745, 1000), G < 0.8,
(1,−19.59745, 0.01), otherwise,
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Fig. 1 Example 1: Density (d) computed by the CURH and LDCU A-WENO schemes (left) and
zoom at G ∈ [0, 0.6] (right).

are prescribed in the computational domain [−1, 1], in which we impose the free
boundary conditions. The exact solution of this initial value problem consists of a
stationary contact wave, a traveling shock, and a traveling rarefaction wave.

We compute the CURH and LDCU A-WENO solutions until the final time C =
0.03 on a uniform mesh with ΔG = 1/100. The obtained densities together with the
reference solution computed using the CURH A-WENO scheme on a much finer
uniform mesh with ΔG = 1/2000 are plotted in Fig. 2. As one can see, the LDCU
A-WENO scheme achieves a sharper resolution of the contact wave compared to the
CURH A-WENO scheme.

Fig. 2 Example 2: Density (d) computed by the CURH and LDCU A-WENO schemes (left) and
zoom at G ∈ [0.75, 0.95] (right).

Example 3—Moving Contact Waves. In the first 2-D test taken from [15], we
consider an isolated moving contact wave with the following initial data:

(d, D, {?) (G, H, 0) =
{
(1.4, 0, 0.2, 1), (G, H) ∈ �
(1, 0, 0.2, 1), otherwise,

(7)

prescribed in the computational domain [−0.2, 0.2] × [0, 0.8], where we impose the
free boundary conditions. In (7), the domain � consists of the points (G, H) satisfying
the following conditions:

{−0.1 < G < 0.1, 0 < H < 0.02} ∪ {−0.02 < G < 0.02, 0.02 < H < 0.1}∪
{(G + 0.02)2 + (H − 0.02)2 < 0.082} ∪ {(G − 0.02)2 + (H − 0.02)2 < 0.082}.
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We compute the numerical solutions until the final time C = 2 by the two studied
A-WENO schemes on a uniform mesh with ΔG = ΔH = 1/400 and plot the obtained
results in Fig. 3. As one can see, the LDCU A-WENO scheme achieves better
resolution of the contact waves in comparison with the CURH A-WENO scheme.
Note that the LDCU A-WENO scheme perfectly resolves the non-moving jumps
across the lines G = ±0.1.

Fig. 3 Example 3: Density (d) computed by the CURH (left) and LDCU (right) A-WENO schemes.

Example 4—Implosion Problem. In this example, we consider the implosion prob-
lem taken from [8, 14, 22]. The initial conditions,

(d, D, {, ?) (G, H, 0) =
{
(0.125, 0, 0, 0.14), |G | + |H | < 0.15,
(1, 0, 0, 1), otherwise,

are prescribed in the computational domain [0, 0.3] × [0, 0.3] with the solid wall
boundary conditions imposed at all of the four sides.

We compute the numerical solutions until the final time C = 2.5 on a uniform
mesh with ΔG = ΔH = 3/4000 by the two studied A-WENO schemes. We present
the obtained results in Fig. 4, where one can observe that the jets generated by
the LDCU A-WENO scheme propagate to a much larger extent compared with the
jet produced by the CURH A-WENO scheme. This demonstrates that the LDCU
A-WENO scheme contains a substantially smaller amount of numerical dissipation
compared with its CURH counterpart.

Example 5—Kelvin-Helmholtz Instability. In this example, we study the Kelvin-
Helmholtz instability, which develops in the test problem taken from [7, 8, 24]. We
take the following initial data:

(d(G, H, 0), D(G, H, 0)) =


(1,−0.5 + 0.54 (H+0.25)/!), H < −0.25,
(2, 0.5 − 0.54 (−H−0.25)/!), −0.25 < H < 0,
(2, 0.5 − 0.54 (H−0.25)/!), 0 < H < 0.25,
(1,−0.5 + 0.54 (0.25−H)/!), H > 0.25,

{(G, H, 0) = 0.01 sin(4cG), ?(G, H, 0) ≡ 1.5,
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Fig. 4 Example 4: Density (d) computed by the CURH (left) and LDCU (right) A-WENO schemes.

where ! is a smoothing parameter (we take ! = 0.00625), which corresponds to
a thin shear interface with a perturbed vertical velocity field { in the conducted
simulations. Periodic boundary conditions are imposed at all of the four sides of the
computational domain [−0.5, 0.5] × [−0.5, 0.5].

We compute the numerical solutions until the final time C = 4 on a uniform
mesh with ΔG = ΔH = 1/400 and plot the obtained results in Fig. 5. As one can
see, at time C = 1, the vortex sheets formed by the CURH A-WENO scheme are
quite smeared by the numerical dissipation, while in the LDCU results these vortex
sheets are much more pronounced. At the later time C = 2.5, one can observe more
complicated vortices and the two-phase turbulence in the “swirls” in the densities
computed by the LDCU A-WENO scheme. At the final time C = 4, the LDCU
solution is quite different from the CURH one and it is actually hard to draw any
comparative conclusions about the quality of the obtained results at that time.

Example 6—Rayleigh-Taylor Instability. In the last example taken from [8, 26,
32], we investigate the Rayleigh-Taylor instability, which is a physical phenomenon
occurring when a layer of heavier fluid is placed on top of a layer of lighter fluid. The
model is governed by the 2-D Euler equations (1), with added gravitational source
terms. In the studied setup, the gravitational force acts in the positive H-direction
and thus the terms d and d{ are added to the third and fourth equations in (6). The
resulting system is considered subject to the following initial conditions:

(d, D, {, ?) (G, H, 0) =
{
(2, 0,−0.025 2 cos(8cG), 2H + 1), H < 0.5,
(1, 0,−0.025 2 cos(8cG), H + 1.5), otherwise,

where 2 :=
√
W?/d is the speed of sound, the solid wall boundary conditions at G = 0

and G = 0.25, and the following Dirichlet boundary conditions at the top and bottom
boundaries:

(d, D, {, ?) (G, 1, C) = (1, 0, 0, 2.5), (d, D, {, ?) (G, 0, C) = (2, 0, 0, 1).

We compute the numerical solutions in the computational domain [0, 0.25] ×
[0, 1] discretized using a uniformmeshwithΔG = ΔH = 1/800 until the final time C =
2.95. The obtained results are presented in Fig. 6. At earlier time C = 1.95, the results
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Fig. 5 Example 5: Density (d) computed by the CURH (top row) and LDCU (bottom row) A-
WENO schemes at three different times.

obtained by the LDCU A-WENO scheme contains more developed mushroom-like
structures compared with the results computed by the CURH A-WENO scheme. At
the final time C = 2.95, one can observe that the LDCU A-WENO scheme captures
much more complicated structures than the CURH one. This clearly indicates that
the amount of numerical dissipation in the LDCUA-WENO schemes is substantially
smaller.

Fig. 6 Example 6: Density (d) computed by the CURH and LDCU A-WENO schemes at different
times.

Remark 1 It is instructive to compare the CPU times consumed by the two studied
schemes. In the 1-D case, the LDCU A-WENO scheme is about 4% more efficient
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than the CURHA-WENO scheme. In the 2-D case, the CURH and LDCUA-WENO
schemes consume about the same CPU time. This suggests that the proposed LDCU
A-WENO scheme outperforms the CURH A-WENO scheme.
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