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Abstract
We introduce second-order low-dissipation (LD) path-conservative central-upwind (PCCU)

schemes for the one- (1-D) and two-dimensional (2-D) multifluid systems, whose components
are assumed to be immiscible and separated by material interfaces. The proposed LD PCCU
schemes are derived within the flux globalization based PCCU framework and they employ
the LD central-upwind (LDCU) numerical fluxes. These fluxes have been recently proposed
in [A. Kurganov and R. Xin, J. Sci. Comput., 96 (2023), Paper No. 56] for the single-fluid
compressible Euler equations and we rigorously develop their multifluid extensions. In order
to achieve higher resolution near the material interfaces, we track their locations and use an
overcompressive SBM limiter in their neighborhoods, while utilizing a dissipative generalized
minmod limiter in the rest of the computational domain. We first develop a second-order
finite-volume LD PCCU scheme and then extend it to the fifth order of accuracy via the
finite-difference alternative weighted essentially non-oscillatory (A-WENO) framework. We
apply the developed schemes to a number of 1-D and 2-D numerical examples to demonstrate
the performance of the new schemes.

Key words: Low-dissipation central-upwind schemes, path-conservative central-upwind schemes,
flux globalization, affine-invariant WENO-Z interpolation, compressible multifluids.
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1 Introduction

In this paper, we focus on the development of highly accurate and conservative finite-volume
methods for compressible multifluids, which are assumed to be immiscible. The studied two-
dimensional (2-D) multifluid system reads as

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

Et + [u(E + p)]x + [v(E + p)]y = 0.

(1.1)
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Here, x and y are spatial variables, t is the time, ρ is the density, u and v are the x- and y-
velocities, p is the pressure, and E is the total energy. The system (1.1) is closed through the
following equation of state (EOS) for each of the fluid components:

p = (γ − 1)
[
E − ρ

2
(u2 + v2)

]
− γπ∞, (1.2)

where the parameters γ and π∞ represent the specific heat ratio and stiffness parameter, respec-
tively. When π∞ ≡ 0, the system (1.1)–(1.2) reduces to the ideal gas multicomponent case.

The fluid components can be identified by the variable φ, such as the specific heat ratio
γ (or a certain function of γ), the mass fraction of the fluid component in the fluid mixture,
or a level-set function designed to track the interfaces between the fluid components; see, e.g.,
[2,3,10,15,33,36,41,50,51] and references therein. The state variable φ propagates with the fluid
velocity and thus satisfies the following advection equation:

φt + uφx + vφy = 0. (1.3)

The system (1.1)–(1.3) is a nonlinear hyperbolic system of PDEs and thus its solutions may
develop complicated wave structures including shocks, rarefactions, and contact discontinuities. In
the single-fluid regime, that is, when γ ≡ Const and π∞ ≡ Const, the system (1.1)–(1.3) reduces
to the Euler equations of gas dynamics, which can be numerically solved by finite-volume (FV)
methods; see, e.g., the monographs [20,30,45] and references therein. However, a straightforward
application of single-fluid FV methods to the multifluid system (1.1)–(1.3) may generate spurious
pressure and velocity oscillations, which typically originate near the material interface and then
spread all over the computational domain; see, e.g., the review paper [2] and references therein.

In recent years, a variety of FV methods capable of capturing material interfaces in a non-
oscillatory manner have been proposed. A fully conservative approach was first developed in [42],
where the pressure and velocity remained constant across the material interface. This approach
is robust but may suffer obvious drawbacks when strong shocks pass through the fluid interface.
The quasi-conservative approach was first introduced in [1], where pressure and velocity non-
disturbing condition at an isolated material interface was introduced to analyze and derive the
spatial discretization. The resulting schemes reduced the numerical oscillations effectively with the
help of a quasi-conservative discretization. There are also many locally nonconservative approaches
designed to prevent pressure/velocity oscillations by sacrificing the conservation property near
material interfaces. The conservation errors in these approaches are typically small and decay
after the mesh is refined. The pressure-based hybrid algorithms [9, 24] are obtained by switching
from the conservative energy equation to the nonconservative pressure one near the interfaces.
The ghost-cell methods based on the single-fluid interpolations leading to two different single-fluid
numerical fluxes at the material interfaces (placed at the cell interfaces at each time step) were
introduced in [3,15]. The interface tracking method [10] is based on the interpolation between the
single-fluid data from both sides of the interface and ignoring the “mixed” cell data. We note that
both the ghost fluid and interface tracking approaches are very robust in the 1-D case, but their
multidimensional extensions are rather cumbersome. For several high-order WENO schemes for
compressible multifluids, we refer the reader to [13,19,22,38,39].

In this paper, our objective is to develop highly accurate and non-oscillatory numerical schemes
for the so-called γ-based multifluid systems studied in [8,43], which in the 2-D case read as (1.1)–
(1.2) together with the equations (1.3) for the state variables Γ := 1/(γ−1) and Π := γπ∞/(γ−1),
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which we recast as follows:

Γt + (uΓ)x + (vΓ)y = Γ(ux + vy), Πt + (uΠ)x + (vΠ)y = Π(ux + vy). (1.4)

The resulting system is nonconservative (in fact, it can be rewritten in the conservative form, but
as it was shown in [43], a nonconservative form is preferable for designing an accurate numerical
method) and the nonconservative terms on the right-hand side require a special treatment.

We numerically solve the system (1.1)–(1.2), (1.4) and its one-dimensional (1-D) version by the
Riemann-problem-solver-free central-upwind (CU) schemes, which were originally introduced in
[25,27,28] for general multidimensional hyperbolic systems of conservative laws, and then extended
to nonconservative hyperbolic systems in [6], where path-conservative CU (PCCU) schemes were
introduced. The PCCU schemes were extended to the flux globalization framework allowing to
treat a wider variety of nonconservative systems in [4, 5, 7, 26].

The aforementioned PCCU schemes are based on the CU numerical fluxes from [25,27], which
have relatively large numerical dissipation preventing high resolution of contact waves/material
interfaces. In the recent work [29], we have introduced a new way of reducing the numerical
dissipation present in the CU schemes and introduced the low-dissipation CU (LDCU) schemes.
In these schemes, the dissipation is reduced at the projection step, performed after the numerical
solution is evolved to the new time level. The novel projection is based on a subcell resolution
technique, which introduces several degrees of freedom that can be utilized to better approximate
contact waves and material interfaces. In [29], we have designed the LDCU schemes for both the
1-D and 2-D single-fluid compressible Euler equations and in this paper, we extend the LDCU
schemes to the γ-based multifluid models. The extension is carried out in the flux globalization
PCCU framework and results in new flux globalization based LD PCCU schemes.

We also extend the proposed LD PCCU schemes to the fifth order of accuracy using the
framework of the finite-difference alternative WENO (A-WENO) schemes developed in [11,21,34,
35,47–49]. Our new fifth-order schemes are based on the LD PCCU numerical fluxes, a new, more
efficient way to approximate the high-order A-WENO correction terms (see [12]), and the recently
proposed fifth-order affine-invariant WENO-Z (Ai-WENO-Z) interpolation [14, 31, 46] applied to
the local characteristic variables with the help of the local characteristic decomposition (LCD).

This paper is organized as follows. §2 is devoted to the 1-D LD PCCU scheme. In §2.1,
we give an overview of the flux globalization based PCCU schemes and develop such scheme for
the γ-based multifluid model. The LD PCCU scheme is derived in §2.2, where we prove that
the new scheme preserves constant velocity and pressure across isolated material interfaces (this
ensures lack of pressure/velocity-based oscillations). In §2.3, the second-order LD PCCU scheme
is extended to the fifth-order flux globalization based LD Ai-WENO PCCU scheme. In §3, we
present the 2-D extensions of the new LD PCCU schemes. In §4, we test the proposed LD PCCU
schemes together with their fifth-order versions on a number of 1-D and 2-D numerical examples.
Finally, in §5, we give some concluding remarks and comments.

2 One-Dimensional Algorithms

In this section, we present the new 1-D flux globalization based LD PCCU schemes for the 1-D
compressible multifluids.
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2.1 Flux Globalization Based Path-Conservative Central-Upwind Schemes

We begin with a brief overview of the flux globalization based PCCU scheme, which was introduced
in [26] for the general nonconservative system

Ut + F (U)x = B(U )Ux,

which can be rewritten in the following quasi-conservative form:

Ut + K(U)x = 0, K(U) = F (U)−R(U), (2.1)

where U(x, t) ∈ Rd is the vector of unknowns, F : Rd → Rd is a flux, B ∈ Rd×d,

R(U) :=

x∫
x̂

B(U)Uξ(ξ, t) dξ,

and x̂ is an arbitrary number.
We first introduce a uniform mesh consisting of the finite-volume cells Cj := [xj− 1

2
, xj+ 1

2
] of

size xj+ 1
2
−xj− 1

2
≡ ∆x centered at xj = (xj− 1

2
+xj+ 1

2
)/2, j = 1, . . . , N and set x̂ = x 1

2
. We assume

that at a certain level t, an approximate solution, realized in terms of the cell averages

U j(t) :≈ 1

∆x

∫
Cj

U(x, t) dx,

is available. The cell averages U j are then evolved in time by solving the following system of
ODEs (see [26]):

d

dt
U j = −

Kj+ 1
2
−Kj− 1

2

∆x
, (2.2)

where Kj+ 1
2

are the CU numerical fluxes

Kj+ 1
2

=
a+
j+ 1

2

K−
j+ 1

2

− a−
j+ 1

2

K+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

(
U+
j+ 1

2

−U−
j+ 1

2

)
. (2.3)

Notice that all of the indexed quantities in (2.2) and (2.3) as well as other indexed quantities
introduced below depend on t, but from now on we will omit this dependence for the sake of
brevity. In (2.3), U±

j+ 1
2

are the left/right-sided point values of U at the cell interfaces xj+ 1
2
,

which are computed using a piecewise linear reconstruction, which will be discussed in §2.1.1, and
a±
j+ 1

2

are the one-sided local speeds of propagation, which can be estimated using the largest and

smallest eigenvalues of the matrix ∂F
∂U

(U)−B(U ). The global fluxes K±
j+ 1

2

are obtained using the

relation in (2.1), namely, by
K±

j+ 1
2

= F±
j+ 1

2

−R±
j+ 1

2

, (2.4)

where F±
j+ 1

2

:= F (U±
j+ 1

2

) and the point values of the global variable R are computed as follows.

First, we set R−1
2

:= 0 and then evaluate

R+
1
2

= BΨ, 1
2
, (2.5)
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and recursively

R−
j+ 1

2

= R+
j− 1

2

+ Bj, R+
j+ 1

2

= R−
j+ 1

2

+ BΨ,j+ 1
2
, j = 1, . . . , N. (2.6)

In (2.5) and (2.6), Bj and BΨ,j+ 1
2

are obtained using a proper quadrature for the integrals in

Bj ≈
∫
Cj

B(U)Ux dx and BΨ,j+ 1
2

=

1∫
0

B
(
Ψj+ 1

2
(s)
)
Ψ′
j+ 1

2
(s) ds, (2.7)

where, Ψj+ 1
2
(s) := Ψ

(
s;U−

j+ 1
2

,U+
j+ 1

2

)
is a sufficiently smooth path connecting the states U−

j+ 1
2

and

U+
j+ 1

2

, that is,

Ψ : [0, 1]× Rd × Rd → Rd, Ψ(0;U−
j+ 1

2

,U+
j+ 1

2

) = U−
j+ 1

2

, Ψ(1;U−
j+ 1

2

,U+
j+ 1

2

) = U+
j+ 1

2

.

2.1.1 Application to the Compressible Multifluid System

We apply the flux globalization based PCCU scheme to the 1-D γ-based multifluid system

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

Et + [u(E + p)]x = 0,

Γt + (uΓ)x = Γux,

Πt + (uΠ)x = Πux,

(2.8)

completed with the following EOS:

p = (γ − 1)
[
E − ρ

2
u2
]
− γπ∞. (2.9)

The system (2.8) can be rewritten in the equivalent quasi-conservative form (2.1) with

U := (ρ, ρu,E,Γ,Π)>, F (U) = (ρu, ρu2 + p, u(E + p), uΓ, uΠ)>,

and R(U) =

(
0, 0, 0,

x∫
x̂

Γuξ dξ,

x∫
x̂

Πuξ dξ

)>
.

(2.10)

We first discuss the reconstruction procedure for recovering the point values U±
j+ 1

2

out of the

cell averages U j. Since the variables u and p are continuous across material interfaces (contact
waves), we reconstruct the primitive variables V := (ρ, u, p,Γ,Π)> instead of the conservative
ones. To this end, we compute the cell centered values of u and p,

uj =
(ρu)j
ρj

, pj =
1

Γj

[
Ej −

((ρu)j)
2

2ρj
−Πj

]
, (2.11)

and then construct the linear pieces

Ṽj(x) = Vj + (Vx)j(x− xj), x ∈ Cj, (2.12)
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where Vj := (ρj, uj, pj,Γj,Πj)
> and the slopes (Vx)j are supposed to be computed with the help

of a nonlinear limiter to ensure a non-oscillatory nature of (2.12). In the numerical experiments
reported in §4, we implement a simple adaptive limiting strategy and use different limiters near
and away from the material interfaces. To this end, we need to detect the location of the interfaces.
In the two-fluid case, this can be done as follows. We first introduce Γ̂ := (ΓI + ΓII)/2, where ΓI

and ΓII are the values of Γ for the first and second fluid, respectively. We then assume that the
interface is located either in cell Cj or Cj+1 if

(Γj − Γ̂)(Γj+1 − Γ̂) < 0. (2.13)

In these two cells as well as in the neighboring cells Cj−1 and Cj+2, we use the overcompressive
SBM limiter [32]:

(Vx)j = φSBM
θ,τ

(
V j+1 −V j

V j −V j−1

)
V j+1 −V j

∆x
, (2.14)

where the two-parameter function

φSBM
θ,τ (r) :=


0 if r < 0,

min{rθ, 1 + τ(r − 1)} if 0 < r ≤ 1,

rφSBM
θ,τ

(1

r

)
otherwise,

(2.15)

is applied in a componentwise manner with τ = −0.5, which belongs to the overcompressive range
of values of τ ; see [32]. Away from the material interfaces, we use a dissipative generalized minmod
limiter which is given by the same formulae (2.14)–(2.15), but with τ = 0.5. In both areas, we use
θ = 1.3.

Remark 2.1 Notice that the generalized minmod limiter can be written in a simpler form [32,37,
44] by

(Vx)j = minmod

(
θ
V j+1 − V j

∆x
,
V j+1 − V j−1

2∆x
, θ

V j − U j−1

∆x

)
,

with the minmod function defined by

minmod(c1, c2, . . .) =


min(c1, c2, . . .) if ci > 0, ∀i,
max(c1, c2, . . .) if ci < 0, ∀i,
0 otherwise.

Remark 2.2 If the number of fluid components is more than two, detecting interface cells becomes
a more complicated task. A reasonable extension of the strategy used in (2.13) should be developed
for the problem at hand.

Equipped with (Vx)j, we then use (2.12) to obtain

V −
j+ 1

2

= lim
x→x−

j+1
2

Ṽ (x) = V j +
∆x

2
(Vx)j, V +

j+ 1
2

= lim
x→x+

j+1
2

Ṽ (x) = V j+1 −
∆x

2
(Vx)j+1, (2.16)

and the corresponding point values of the conservative variables U :

U±
j+ 1

2

=
(
ρ±
j+ 1

2

, ρ±
j+ 1

2

u±
j+ 1

2

, E±
j+ 1

2

,Γ±
j+ 1

2

,Π±
j+ 1

2

)>
, E±

j+ 1
2

= Γ±
j+ 1

2

p±
j+ 1

2

+
ρ±
j+ 1

2

2

(
u±
j+ 1

2

)2
+Π±

j+ 1
2

. (2.17)
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We then compute the point values K±
j+ 1

2

following (2.4)–(2.6). First, we use (2.10) and (2.17) to

obtain

F±
j+ 1

2

=
(
ρ±
j+ 1

2

u±
j+ 1

2

, ρ±
j+ 1

2

(
u±
j+ 1

2

)2
+ p±

j+ 1
2

, u±
j+ 1

2

(
E±
j+ 1

2

+ p±
j+ 1

2

)
,Γ±

j+ 1
2

u±
j+ 1

2

,Π±
j+ 1

2

u±
j+ 1

2

)>
, (2.18)

and then evaluate Bj in (2.7) by substituting there the piecewise linear reconstructions (2.12) of
u, Γ, and Π, which results in

Bj =

(
0, 0, 0,

Γ−
j+ 1

2

+ Γ+
j− 1

2

2

(
u−
j+ 1

2

− u+
j− 1

2

)
,
Π−
j+ 1

2

+ Π+
j− 1

2

2

(
u−
j+ 1

2

− u+
j− 1

2

))>
. (2.19)

Next, in order to obtain BΨ,j+ 1
2

in (2.7), a proper path connecting the states (u−
j+ 1

2

,Γ−
j+ 1

2

,Π−
j+ 1

2

)

and (u+
j+ 1

2

,Γ+
j+ 1

2

,Π+
j+ 1

2

) needs to be used, for instance, a simple linear path:

Ψu
j+ 1

2
(s) = u−

j+ 1
2

+ s
(
u+
j+ 1

2

− u−
j+ 1

2

)
, ΨΓ

j+ 1
2
(s) = Γ−

j+ 1
2

+ s
(
Γ+
j+ 1

2

− Γ−
j+ 1

2

)
,

ΨΠ
j+ 1

2
(s) = Π−

j+ 1
2

+ s
(
Π+
j+ 1

2

− Π−
j+ 1

2

)
.

(2.20)

Substituting (2.20) into (2.7) then results in

BΨ,j+ 1
2

=

(
0, 0, 0,

Γ+
j+ 1

2

+ Γ−
j+ 1

2

2

(
u+
j+ 1

2

− u−
j+ 1

2

)
,
Π+
j+ 1

2

+ Π−
j+ 1

2

2

(
u+
j+ 1

2

− u−
j+ 1

2

))>
. (2.21)

Finally, the one-sided local-speeds of propagation a±
j+ 1

2

can be estimated by

a+
j+ 1

2

= max
{
u−
j+ 1

2

+ c−
j+ 1

2

, u+
j+ 1

2

+ c+
j+ 1

2

, 0
}
, a−

j+ 1
2

= min
{
u−
j+ 1

2

− c−
j+ 1

2

, u+
j+ 1

2

− c+
j+ 1

2

, 0
}
,

where c :=
√

[(1 + Γ)p+ Π] /(Γρ).

Remark 2.3 The numerical fluxes (2.3) are slightly different from those present in [26] as one of
the goals in [26] was to make the resulting scheme well-balanced and thus different values of U±

j+ 1
2

were used in (2.3) and in the computation of K±
j+ 1

2

.

2.2 Flux Globalization Based Low-Dissipation PCCU Schemes

In this section, we derived a modified, LD version of the flux globalization based PCCU scheme
presented in §2.1. We follow the idea used in [29], where the LDCU scheme for the single-fluid
compressible Euler equations has been introduced. In order to extend the LDCU scheme to the
multifluid case, we now go through all of the derivation steps and begin with the development of
the fully discrete LD PCCU scheme.

2.2.1 Fully Discrete Scheme

We assume that the computed cell averages U
n

j :≈ 1
∆x

∫
Cj

U(x, tn) dx are available at a certain

time level t = tn and use them to reconstruct a second-order piecewise linear interpolant consisting



8 S. Chu, A. Kurganov, & R. Xin

of the linear pieces U
n

j + (Ux)
n
j (x − xj), x ∈ Cj, where the slopes (Ux)

n
j are obtained using a

certain nonlinear limiter. We then estimate the local speeds of propagation a±
j+ 1

2

, introduce the

corresponding points xn
j+ 1

2
,`

:= xj+ 1
2

+ a−
j+ 1

2

∆tn and xn
j+ 1

2
,r

:= xj+ 1
2

+ a+
j+ 1

2

∆tn, and integrate the

system (2.1) over the space-time control volumes, which consist of the “smooth”, [xj− 1
2
,r, xj+ 1

2
,`]×

[tn, tn+1], and “nonsmooth”, [xj+ 1
2
,`, xj+ 1

2
,r] × [tn, tn+1], ones, where tn+1 := tn + ∆tn. This way

the solution is evolved in time and upon the completion of the evolution step, we obtain the
intermediate cell averages

U
int

j+ 1
2

=
1

a+
j+ 1

2

− a−
j+ 1

2

{
Un
j+ 1

2
,r
a+
j+ 1

2

−
(Ux)

n
j+1

2

(
a+
j+ 1

2

)2
∆tn −Un

j+ 1
2
,`
a−
j+ 1

2

+
(Ux)

n
j

2

(
a−
j+ 1

2

)2
∆tn

−
[
K
(
U
n+ 1

2

j+ 1
2
,r

)
−K

(
U
n+ 1

2

j+ 1
2
,`

)]} (2.22)

and

U
int

j = U
n

j +
(Ux)

n
j

2

(
a+
j− 1

2

+ a−
j+ 1

2

)
∆tn

− ∆tn

∆x−
(
a+
j− 1

2

− a−
j+ 1

2

)
∆tn

[
K
(
U
n+ 1

2

j+ 1
2
,`

)
−K

(
U
n+ 1

2

j− 1
2
,r

)]
;

(2.23)

see [29] for details. In (2.22)–(2.23), the point values of U at
(
xn
j+ 1

2
,`
, tn
)

and
(
xn
j+ 1

2
,r
, tn
)

are

computed using the piecewise linear reconstruction of U , namely,

Un
j+ 1

2
,`

:= Ũ(xn
j+ 1

2
,`
, tn) = U

n

j + (Ux)
n
j

(∆x

2
+ a−

j+ 1
2

∆tn
)
,

Un
j+ 1

2
,r

:= Ũ(xn
j+ 1

2
,r
, tn) = U

n

j+1 − (Ux)
n
j+1

(∆x

2
− a+

j+ 1
2

∆tn
)
,

and the point values of U at
(
xn
j+ 1

2
,`
, tn+ 1

2

)
and

(
xn
j+ 1

2
,r
, tn+ 1

2 ), are obtained using the Taylor

expansions about
(
xj+ 1

2
,r, t

n
)

and
(
xj+ 1

2
,`, t

n
)
, respectively, and the fact that Ut = −K(U)x:

U
n+ 1

2

j+ 1
2
,`

= Un
j+ 1

2
,`
− ∆tn

2
K
(
Un
j+ 1

2
,`

)
x
, U

n+ 1
2

j+ 1
2
,r

= Un
j+ 1

2
,r
− ∆tn

2
K
(
Un
j+ 1

2
,r

)
x
. (2.24)

Here, the slopes K
(
Un
j+ 1

2
,`

)
x

and K
(
Un
j+ 1

2
,r

)
x

can be computed with the help of a certain nonlinear

limiter; see [25] for details.

Next, the intermediate solution, realized in terms of {U int

j } and {U int

j+ 1
2
}, is projected onto the

original grid. To this end, we need to construct the interpolant

Ũ int(x) =
∑
j

{
Ũ int
j+ 1

2
(x)X[x

j+1
2 ,`
,x

j+1
2 ,r

] +U
int

j X[x
j− 1

2 ,r
,x

j+1
2 ,`

]

}
, (2.25)

where X denotes the characteristic function of the corresponding intervals. We set

Ũ int
j+ 1

2
(x) =

U
int,L

j+ 1
2
, x < xj+ 1

2
,

U
int,R

j+ 1
2
, x > xj+ 1

2
,

(2.26)
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where the values U
int,L

j+ 1
2

and U
int,R

j+ 1
2

are determined in several steps. First, according to the local
conservation requirement, the conditions

a+
j+ 1

2

U
int,R

j+ 1
2
− a−

j+ 1
2

U
int,L

j+ 1
2

= (a+
j+ 1

2

− a−
j+ 1

2

)U
int

j+ 1
2

(2.27)

have to be satisfied, and the rest of the relations on U
int,L

j+ 1
2

and U
int,R

j+ 1
2

are to be established for
the problem at hand. In fact, the conservation of Γ and Π components of U is not physically
essential, but the relation (2.27) for Γ and Π are crucial for proving physically relevant properties
of the resulting flux globalization based LD PCCU scheme; see §2.2.3.

For the γ-based multifluid model (2.8)–(2.9), we follow the single-fluid approach from [29] and
make the projection step sharp and accurate for the contact waves, which are linearly degenerate
and thus affected by the excessive numerical dissipation much more than nonlinear shock waves.
In order to design such projection step, we consider an isolated contact wave consisting of the
jump discontinuities in ρ, γ, and Π propagating in the region with constant u and p, and make
both u and p to be constant across the cell interface, namely, we set

(ρu)int,L

j+ 1
2

ρ int,L

j+ 1
2

=
(ρu)int,R

j+ 1
2

ρ int,R

j+ 1
2

,

1

Γ
int,L

j+ 1
2

(
E

int,L

j+ 1
2
−

(
(ρu)int,L

j+ 1
2

)2

2ρ int,L

j+ 1
2

−Π
int,L

j+ 1
2

)
=

1

Γ
int,R

j+ 1
2

(
E

int,R

j+ 1
2
−

(
(ρu)int,R

j+ 1
2

)2

2ρ int,R

j+ 1
2

−Π
int,R

j+ 1
2

)
,

(2.28)

where we have used the EOS (2.9). Next, we solve (2.27) and (2.28) for (ρu)int,L

j+ 1
2

, (ρu)int,R

j+ 1
2

, E
int,L

j+ 1
2

,

and E
int,R

j+ 1
2

, and express these quantities in terms of ρ int,L

j+ 1
2

, ρ int,R

j+ 1
2

, Γ
int,L

j+ 1
2

, Γ
int,R

j+ 1
2

, Π
int,L

j+ 1
2

, and Π
int,R

j+ 1
2

:

(ρu)int,L

j+ 1
2

=
ρ int,L

j+ 1
2

ρ int
j+ 1

2

(ρu)int
j+ 1

2
, E

int,L

j+ 1
2

=
Γ

int,L

j+ 1
2

Γ
int

j+ 1
2

E
int

j+ 1
2

+
a+
j+ 1

2

(
Γ

int,R

j+ 1
2
ρ int,L

j+ 1
2

−Γ
int,L

j+ 1
2
ρ int,R

j+ 1
2

)
2
(
a+
j+ 1

2

− a−
j+ 1

2

)
Γ

int

j+ 1
2

(
ρ int
j+ 1

2

)2

(
(ρu)int

j+ 1
2

)2
+
a+
j+ 1

2

(
Γ

int,R

j+ 1
2

Π
int,L

j+ 1
2
−Γ

int,L

j+ 1
2

Π
int,R

j+ 1
2

)
(
a+
j+ 1

2

− a−
j+ 1

2

)
Γ

int

j+ 1
2

,

(ρu)int,R

j+ 1
2

=
ρ int,R

j+ 1
2

ρ int
j+ 1

2

(ρu)int
j+ 1

2
, E

int,R

j+ 1
2

=
Γ

int,R

j+ 1
2

Γ
int

j+ 1
2

E
int

j+ 1
2

+
a−
j+ 1

2

(
Γ

int,R

j+ 1
2
ρ int,L

j+ 1
2

−Γ
int,L

j+ 1
2
ρ int,R

j+ 1
2

)
2
(
a+
j+ 1

2

− a−
j+ 1

2

)
Γ

int

j+ 1
2

(
ρ int
j+ 1

2

)2

(
(ρu)int

j+ 1
2

)2
+
a−
j+ 1

2

(
Γ

int,R

j+ 1
2

Π
int,L

j+ 1
2
−Γ

int,L

j+ 1
2

Π
int,R

j+ 1
2

)
(
a+
j+ 1

2

− a−
j+ 1

2

)
Γ

int

j+ 1
2

.

(2.29)

Notice that after enforcing (2.27) and (2.28), we are left with three degrees of freedom, which we
use to make the profiles of ρ, Γ, and Π across the cell interface as sharp as possible and, at the
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same time, non-oscillatory. This is achieved in the same way as in [29], namely, by setting

ρ int,L

j+ 1
2

= ρ int
j+ 1

2
+
δρ
j+ 1

2

a−
j+ 1

2

, Γ
int,L

j+ 1
2

= Γ
int

j+ 1
2

+
δΓ
j+ 1

2

a−
j+ 1

2

, Π
int,L

j+ 1
2

= Π
int

j+ 1
2

+
δΠ
j+ 1

2

a−
j+ 1

2

,

ρ int,R

j+ 1
2

= ρ int
j+ 1

2
+
δρ
j+ 1

2

a+
j+ 1

2

, Γ
int,R

j+ 1
2

= Γ
int

j+ 1
2

+
δΓ
j+ 1

2

a+
j+ 1

2

, Π
int,R

j+ 1
2

= Π
int

j+ 1
2

+
δΠ
j+ 1

2

a+
j+ 1

2

,

(2.30)

where

δρ
j+ 1

2

= minmod
(
−a−

j+ 1
2

(
ρ int
j+ 1

2
− ρint

j+ 1
2
,`

)
, a+

j+ 1
2

(
ρint
j+ 1

2
,r
− ρ int

j+ 1
2

))
,

δΓ
j+ 1

2
= minmod

(
−a−

j+ 1
2

(
Γ

int

j+ 1
2
− Γint

j+ 1
2
,`

)
, a+

j+ 1
2

(
Γint
j+ 1

2
,r
− Γ

int

j+ 1
2

))
,

δΠ
j+ 1

2
= minmod

(
−a−

j+ 1
2

(
Π

int

j+ 1
2
− Πint

j+ 1
2
,`

)
, a+

j+ 1
2

(
Πint
j+ 1

2
,r
− Π

int

j+ 1
2

))
,

(2.31)

and U int
j+ 1

2
,`
≈ U(xj+ 1

2
,`, t

n+1) and U int
j+ 1

2
,r
≈ U(xj+ 1

2
,r, t

n+1) are evaluated similarly to (2.24):

U int
j+ 1

2
,`

= Un
j+ 1

2
,`
−∆tnK

(
Un
j+ 1

2
,`

)
x
, U int

j+ 1
2
,r

= Un
j+ 1

2
,r
−∆tnK

(
Un
j+ 1

2
,r

)
x
. (2.32)

We then complete the construction of U
int,L

j+ 1
2

and U
int,R

j+ 1
2

by substituting (2.30) into (2.29), which
results in

(ρu)int,L

j+ 1
2

= (ρu)int
j+ 1

2
+
δρ
j+ 1

2

a−
j+ 1

2

uint
j+ 1

2
, (ρu)int,R

j+ 1
2

= (ρu)int
j+ 1

2
+
δρ
j+ 1

2

a+
j+ 1

2

uint
j+ 1

2
,

E
int,L

j+ 1
2

=

(
1 +

δΓ
j+ 1

2

a−
j+ 1

2

Γ
int

j+ 1
2

)
E

int

j+ 1
2

+
δρ
j+ 1

2

Γ
int

j+ 1
2
− δΓ

j+ 1
2

ρ int
j+ 1

2

2a−
j+ 1

2

Γ
int

j+ 1
2

(
uint
j+ 1

2

)2
+
δΠ
j+ 1

2

Γ
int

j+ 1
2
− δΓ

j+ 1
2

Π
int

j+ 1
2

a−
j+ 1

2

Γ
int

j+ 1
2

,

E
int,R

j+ 1
2

=

(
1 +

δΓ
j+ 1

2

a+
j+ 1

2

Γ
int

j+ 1
2

)
E

int

j+ 1
2

+
δρ
j+ 1

2

Γ
int

j+ 1
2
− δΓ

j+ 1
2

ρ int
j+ 1

2

2a+
j+ 1

2

Γ
int

j+ 1
2

(
uint
j+ 1

2

)2
+
δΠ
j+ 1

2

Γ
int

j+ 1
2
− δΓ

j+ 1
2

Π
int

j+ 1
2

a+
j+ 1

2

Γ
int

j+ 1
2

,

(2.33)

where uint
j+ 1

2

:= (ρu)int
j+ 1

2

/ρ int
j+ 1

2

.

Equipped with (2.30)–(2.33), we finalize the projection step by integrating the piecewise con-
stant interpolant (2.25)–(2.26) over the cell Cj. This leads to the following cell averages at the
time level t = tn+1:

ρn+1
j =

1

∆x

∫
Cj

ρ̃ int(x) dx = ρ int
j +

∆tn

∆x

[
a+
j− 1

2

(
ρ int,R

j− 1
2

− ρ int
j

)
− a−

j+ 1
2

(
ρ int,L

j+ 1
2

− ρ int
j

)]
(2.30)
= ρ int

j +
∆tn

∆x

[
a+
j− 1

2

(
ρ int
j− 1

2
− ρ int

j

)
− a−

j+ 1
2

(
ρ int
j+ 1

2
− ρ int

j

)
+ δρ

j− 1
2

− δρ
j+ 1

2

]
,

(2.34)
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(ρu)n+1
j =

1

∆x

∫
Cj

(ρ̃u)int(x) dx

= (ρu)int
j +

∆tn

∆x

[
a+
j− 1

2

(
(ρu)int,R

j− 1
2

− (ρu)int
j

)
− a−

j+ 1
2

(
(ρu)int,L

j+ 1
2

− (ρu)int
j

)]
(2.33)
= (ρu)int

j +
∆tn

∆x

[
a+
j− 1

2

(
(ρu)int

j− 1
2
− (ρu)int

j

)
− a−

j+ 1
2

(
(ρu)int

j+ 1
2
− (ρu)int

j

)
+ δρ

j− 1
2

uint
j− 1

2
− δρ

j+ 1
2

uint
j+ 1

2

]
,

(2.35)

E
n+1

j =
1

∆x

∫
Cj

Ẽ int(x) dx = E
int

j +
∆tn

∆x

[
a+
j− 1

2

(
E

int,R

j− 1
2
−E int

j

)
− a−

j+ 1
2

(
E

int,L

j+ 1
2
−E int

j

)]
(2.33)
= E

int

j +
∆tn

∆x

[
a+
j− 1

2

(
E

int

j− 1
2
−E int

j

)
− a−

j+ 1
2

(
E

int

j+ 1
2
−E int

j

)
+
δρ
j− 1

2

Γ
int

j+ 1
2
− δΓ

j− 1
2

ρ int
j− 1

2

2Γ
int

j− 1
2

(
uint
j− 1

2

)2 −
δρ
j+ 1

2

Γ
int

j+ 1
2
− δΓ

j+ 1
2

ρ int
j+ 1

2

2Γ
int

j+ 1
2

(
uint
j+ 1

2

)2

+
δΠ
j− 1

2

Γ
int

j− 1
2
− δΓ

j− 1
2

Π
int

j− 1
2

Γ
int

j− 1
2

−
δΠ
j+ 1

2

Γ
int

j+ 1
2
− δΓ

j+ 1
2

Π
int

j+ 1
2

Γ
int

j+ 1
2

+
δΓ
j− 1

2

Γ
int

j− 1
2

E
int

j− 1
2
−
δΓ
j+ 1

2

Γ
int

j+ 1
2

E
int

j+ 1
2

]
,

(2.36)

Γ
n+1

j =
1

∆x

∫
Cj

Γ̃ int(x) dx = Γ
int

j +
∆tn

∆x

[
a+
j− 1

2

(
Γ

int,R

j− 1
2
−Γ

int

j

)
− a−

j+ 1
2

(
Γ

int,L

j+ 1
2
−Γ

int

j

)]
(2.30)
= Γ

int

j +
∆tn

∆x

[
a+
j− 1

2

(
Γ

int

j− 1
2
−Γ

int

j

)
− a−

j+ 1
2

(
Γ

int

j+ 1
2
−Γ

int

j

)
+ δΓ

j− 1
2
− δΓ

j+ 1
2

]
,

(2.37)

Π
n+1

j =
1

∆x

∫
Cj

Π̃ int(x) dx = Π
int

j +
∆tn

∆x

[
a+
j− 1

2

(
Π

int,R

j− 1
2
−Π

int

j

)
− a−

j+ 1
2

(
Π

int,L

j+ 1
2
−Π

int

j

)]
(2.30)
= Π

int

j +
∆tn

∆x

[
a+
j− 1

2

(
Π

int

j− 1
2
−Π

int

j

)
− a−

j+ 1
2

(
Π

int

j+ 1
2
−Π

int

j

)
+ δΠ

j− 1
2
− δΠ

j+ 1
2

]
.

(2.38)

2.2.2 Semi-Discrete Scheme

Finally, we pass to the semi-discrete limit ∆tn → 0 in (2.34)–(2.38) and proceed as in [29, §2.2]
to end up with the semi-discretization (2.2) with the modified (compared with (2.3)) numerical
fluxes

Kj+ 1
2

=
a+
j+ 1

2

K−
j+ 1

2

− a−
j+ 1

2

K+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

(
U+
j+ 1

2

−U−
j+ 1

2

)
+ qj+ 1

2
, (2.39)

where

qj+ 1
2

= qρ
j+ 1

2

(
1, u∗

j+ 1
2
,

(
u∗
j+ 1

2

)2

2
, 0, 0

)>
+ qΓ

j+ 1
2

(
0, 0,

1

Γ∗
j+ 1

2

[
E∗
j+ 1

2
−

(
(ρu)∗

j+ 1
2

)2

2ρ∗
j+ 1

2

− Π∗
j+ 1

2

]
, 1, 0

)>
+ qΠ

j+ 1
2
(0, 0, 1, 0, 1)>

(2.40)
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is a built-in “anti-diffusion” term. In (2.40),

U ∗
j+ 1

2
=
a+
j+ 1

2

U+
j+ 1

2

− a−
j+ 1

2

U−
j+ 1

2

−
(
K+

j+ 1
2

−K−
j+ 1

2

)
a+
j+ 1

2

− a−
j+ 1

2

, u∗
j+ 1

2
=

(ρu)∗
j+ 1

2

ρ∗
j+ 1

2

,

qρ
j+ 1

2

= minmod
(
−a−

j+ 1
2

(
ρ∗
j+ 1

2
− ρ−

j+ 1
2

)
, a+

j+ 1
2

(
ρ+
j+ 1

2

− ρ∗
j+ 1

2

))
,

qΓ
j+ 1

2
= minmod

(
−a−

j+ 1
2

(
Γ∗
j+ 1

2
− Γ−

j+ 1
2

)
, a+

j+ 1
2

(
Γ+
j+ 1

2

− Γ∗
j+ 1

2

))
,

qΠ
j+ 1

2
= minmod

(
−a−

j+ 1
2

(
Π∗
j+ 1

2
− Π−

j+ 1
2

)
, a+

j+ 1
2

(
Π+
j+ 1

2

− Π∗
j+ 1

2

))
.

(2.41)

Remark 2.4 If we replace (2.26) with the following limited linear piece:

Ũ int
j+ 1

2
(x) = U

int

j+ 1
2

+ (Ux)
int
j+ 1

2

(
x−

xj+ 1
2
,r + xj+ 1

2
,`

2

)
,

where

(Ux)
int
j+ 1

2
= minmod

(
U int
j+ 1

2
,r
− U

int

j+ 1
2

δ
,
U

int

j+ 1
2
−U int

j+ 1
2
,`

δ

)
, δ :=

∆tn

2

(
a+
j+ 1

2

− a−
j+ 1

2

)
,

we will end up with an alternative built-in “anti-diffusion” term

qj+ 1
2

= −
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

minmod
(
U ∗
j+ 1

2
−U−

j+ 1
2

,U+
j+ 1

2

−U ∗
j+ 1

2

)
,

which was introduced in [25]. This will result in another flux globalization based PCCU scheme
for the γ-based multifluid system. In the numerical results reported in §4, we will compare the
behavior of this PCCU scheme with the proposed LD PCCU one.

2.2.3 Properties of the Semi-Discrete Scheme

In this section, we establish two important properties the designed semi-discrete scheme satisfies:
1. When initially γ ≡ Const and π∞ ≡ Const, that is, if initially the system contains a single

fluid, then γ and π∞ will stay constant for all t;
2. At the isolated material interface at which initially u ≡ Const and p ≡ Const, both u and

p will stay constant for all t.
To this end, we prove the following theorem.

Theorem 2.5 1. If Γj ≡ Γ̂ = Const and Πj ≡ Π̂ = Const for all j at a certain time level t, then

d

dt
Γj =

d

dt
Πj ≡ 0, ∀j.

2. If at a certain time level t = tn, unj ≡ û = Const and pnj ≡ p̂ = Const for all j, then at the next
time level t = tn+1,

un+1
j ≡ û and pn+1

j ≡ p̂, ∀j, (2.42)

provided the ODE system (2.2), (2.39)–(2.41) is discretized using the forward Euler method.
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Proof: 1. We only show that d
dt

Γj ≡ 0 as d
dt

Πj ≡ 0 can be proved in a similar way. Since the
point values of Γ at the cell interfaces are obtained using the piecewise linear reconstruction (2.16),

we have Γ+
j+ 1

2

= Γ−
j+ 1

2

= Γ+
j− 1

2

≡ Γ̂, which we substitute into (2.18), (2.19), and (2.21) to obtain(
F (4)

)±
j+ 1

2

= Γ̂u±
j+ 1

2

, B
(4)
j = Γ̂

(
u−
j+ 1

2

− u+
j− 1

2

)
, B

(4)

Ψ,j+ 1
2

= Γ̂
(
u+
j+ 1

2

− u−
j+ 1

2

)
. (2.43)

We then use (2.4)–(2.6) to compute the flux differences(
K(4)

)+

j+ 1
2

−
(
K(4)

)−
j+ 1

2

=
(
F (4)

)+

j+ 1
2

−
(
F (4)

)−
j+ 1

2

−B(4)

Ψ,j+ 1
2

(2.43)
= 0,(

K(4)
)−
j+ 1

2

−
(
K(4)

)+

j− 1
2

=
(
F (4)

)−
j+ 1

2

−
(
F (4)

)+

j− 1
2

−B(4)
j

(2.43)
= 0,

(2.44)

which we substitute into (2.41) to verify that

qΓ
j+ 1

2
= 0. (2.45)

Finally, we substitute (2.44)–(2.45) into (2.2), (2.39)–(2.40) to end up with d
dt

Γj ≡ 0. This
completes the proof of the first part of the theorem.

2. Since the point values of u and p at the cell interfaces are computed using the piecewise
linear reconstruction (2.16), we have u+

j+ 1
2

= u−
j+ 1

2

= u+
j− 1

2

≡ û and p+
j+ 1

2

= p−
j+ 1

2

= p+
j− 1

2

≡ p̂ at the

time level t = tn. This results in

U±
j+ 1

2

=
(
ρ±
j+ 1

2

, ρ±
j+ 1

2

û, E±
j+ 1

2

,Γ±
j+ 1

2

,Π±
j+ 1

2

)>
, E±

j+ 1
2

= p̂Γ±
j+ 1

2

+
û 2

2
ρ±
j+ 1

2

+ Π±
j+ 1

2

,

F±
j+ 1

2

=
(
ρ±
j+ 1

2

û, ρ±
j+ 1

2

û 2 + p̂, û (E±
j+ 1

2

+ p̂ ),Γ±
j+ 1

2

û,Π±
j+ 1

2

û
)>
,

(2.46)

and hence, after substituting u±
j+ 1

2

into (2.19) and (2.21), we obtain

Bj = BΨ,j+ 1
2
≡ 0.

The latter equality implies K±
j+ 1

2

= F±
j+ 1

2

, which together with (2.46) results in

F+
j+ 1

2

− F−
j+ 1

2

= û (U+
j+ 1

2

−U+
j+ 1

2

),

so that the first line in (2.41) can be rewritten as

U ∗
j+ 1

2
=
a+
j+ 1

2

U+
j+ 1

2

− a−
j+ 1

2

U−
j+ 1

2

− û
(
U+
j+ 1

2

−U−
j+ 1

2

)
a+
j+ 1

2

− a−
j+ 1

2

, u∗
j+ 1

2
= û. (2.47)

We then use (2.40), (2.41), (2.46), and (2.47) to compute the “anti-diffusion” term, which reduces
to

qj+ 1
2

=
(
qρ
j+ 1

2

, û qρ
j+ 1

2

, p̂ qΓ
j+ 1

2
+
û 2

2
qρ
j+ 1

2

+ qΠ
j+ 1

2
, qΓ
j+ 1

2
, qΠ
j+ 1

2

)>
, (2.48)

and then substitute (2.46) and (2.48) into (2.39) to obtain the numerical fluxes

Kj+ 1
2

=
(
K(1)

j+ 1
2

, ûK(1)

j+ 1
2

+ p̂, p̂K(4)

j+ 1
2

+
û 2

2
K(1)

j+ 1
2

+K(5)

j+ 1
2

+ ûp̂,K(4)

j+ 1
2

,K(5)

j+ 1
2

)>
,
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which, in turn, are substituted into (2.2) to obtain the following semi-discrete relations:

d

dt
(ρu)nj = û

d

dt
ρnj ,

d

dt
E
n

j = p̂
d

dt
Γ
n

j +
û 2

2

d

dt
ρnj +

d

dt
Π
n

j .

These relations are discretized using the forward Euler method, which results in

(ρu)n+1
j − (ρu)nj

∆t
= û

ρn+1
j − ρnj

∆t
,

E
n+1

j −E n

j

∆t
= p̂

Γ
n+1

j −Γ
n

j

∆t
+
û 2

2
·
ρn+1
j − ρnj

∆t
+

Π
n+1

j −Π
n

j

∆t
.

(2.49)

Finally, we substitute (2.11) expressed at both time levels t = tn and t = tn+1 into (2.49) to end
up with (2.42). This completes the proof of the second part of the theorem. �

Remark 2.6 The second part of Theorem 2.5 is still true if the forward Euler time discretization
is replaced with another strong stability preserving (SSP) ODE solver; see, e.g., [16, 17].

Remark 2.7 As in [29], the computation of numerical fluxes in (2.39) should be desingularized
to avoid division by zero or very small numbers. If a+

j+ 1
2

< ε0 and a−
j+ 1

2

> −ε0 for a small positive

ε0, we replace the fluxes Kj+ 1
2

with

Kj+ 1
2

=
K
(
U−
j+ 1

2

)
+ K

(
U+
j+ 1

2

)
2

.

In all of the numerical examples reported in §4, we have taken ε0 = 10−12.

2.3 Flux Globalization Based LD Ai-WENO PCCU Scheme

In this section, we extend the second-order flux globalization based LD PCCU schemes from §2.2
to the fifth order of accuracy within the A-WENO framework.

The semi-discrete fifth-order LD Ai-WENO PCCU scheme for the 1-D quasi-conservative sys-
tem (2.1) reads as

d

dt
Uj = −

Hj+ 1
2
−Hj− 1

2

∆x
, (2.50)

where Uj :≈ U(xj, t) and the fifth-order numerical fluxes Hj+ 1
2

are defined by

Hj+ 1
2

= Kj+ 1
2
− ∆x

24
(Kxx)j+ 1

2
+

7(∆x)3

5760
(Kxxxx)j+ 1

2
. (2.51)

Here, Kj+ 1
2

are the finite-volume fluxes (2.39)–(2.41), and (Kxx)j+ 1
2

and (Kxxxx)j+ 1
2

are approxi-
mations of the second- and fourth-order spatial derivatives of K at x = xj+ 1

2
, which we compute

using the finite-difference approximations recently proposed in [12]:

(Kxx)j+ 1
2

=
1

12(∆x)2

[
−Kj− 3

2
+ 16Kj− 1

2
− 30Kj+ 1

2
+ 16Kj+ 3

2
−Kj+ 5

2

]
,

(Kxxxx)j+ 1
2

=
1

(∆x)4

[
Kj− 3

2
− 4Kj− 1

2
+ 6Kj+ 1

2
− 4Kj+ 3

2
+ Kj+ 5

2

]
.

(2.52)
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The resulting semi-discrete scheme (2.50)–(2.52) will be fifth-order accurate provided the point
values U±

j+ 1
2

are calculated using a fifth-order interpolation. To this end, we apply the recently

proposed fifth-order Ai-WENO-Z interpolation [14,31,46], which we briefly describe in Appendix
A.

3 Two-Dimensional Algorithms

In this section, we extend the proposed 1-D flux globalization based LD A-WENO PCCU schemes
to the 2-D γ-based multifluid system (1.1), (1.2), (1.4). This system can be written in the vector
form

Ut + F (U )x + G(U)y = B(U )Ux + C(U)Uy,

or, equivalently, in the quasi-conservative form

Ut + K(U )x + L(U)y = 0 (3.1)

with
K(U) = F (U)−R(U), L(U) = G(U)− S(U ),

R(U) =

x∫
x̂

B(U)Uξ dξ, S(U) =

y∫
ŷ

C(U )Uη dη.
(3.2)

Here,

U := (ρ, ρu, ρv, E,Γ,Π)>,

F (U) = (ρu, ρu2 + p, ρuv, u(E + p), uΓ, uΠ)>, B(U)Ux =
(
0, 0, 0, 0,Γux,Πux

)>
,

G(U) = (ρv, ρuv, ρv2 + p, v(E + p), vΓ, vΠ)>, C(U)Uy =
(
0, 0, 0, 0,Γvy,Πvy

)>
.

(3.3)

We first introduce a uniform mesh consisting of the finite-volume cells Cj,k := [xj− 1
2
, xj+ 1

2
] ×

[yk− 1
2
, yk+ 1

2
] of the uniform size ∆x∆y with xj+ 1

2
− xj− 1

2
≡ ∆x and yk+ 1

2
− yk− 1

2
≡ ∆y centered at

(xj, yk) with xj = (xj− 1
2

+ xj+ 1
2
)/2 and (yk− 1

2
+ yk+ 1

2
)/2, j = 1, . . . , Nx, k = 1, . . . , Ny.

We assume that at certain time level t, an approximate solution, realized in terms of the cell
averages U j,k :≈ 1

∆x∆y

∫∫
Cj,k

U(x, y, t) dx dy, is available. These cell averages are then evolved in

time by solving the following system of ODEs:

d

dt
U j,k = −

Kj+ 1
2
,k −Kj− 1

2
,k

∆x
−

Lj,k+ 1
2
−Lj,k− 1

2

∆y
, (3.4)

where the x- and y-numerical fluxes are

Kj+ 1
2
,k =

a+
j+ 1

2
,k
K−

j+ 1
2
,k
− a−

j+ 1
2
,k
K+

j+ 1
2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+
a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

(
U+
j+ 1

2
,k
−U−

j+ 1
2
,k

)
+ qj+ 1

2
,k, (3.5)

Lj,k+ 1
2

=
b+
j,k+ 1

2

L−
j,k+ 1

2

− b−
j,k+ 1

2

L+
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

(
U+
j,k+ 1

2

−U−
j,k+ 1

2

)
+ qj,k+ 1

2
. (3.6)
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The one-sided point values U±
j+ 1

2
,k

and U±
j,k+ 1

2

at the cell interfaces (xj+ 1
2
, yk) and (xj, yk+ 1

2
),

respectively, are obtained as follows. We first use the cell averages U j,k to compute the point
values of u, v, and p at the cell centers:

uj,k =
(ρu)j,k
ρj,k

, vj,k =
(ρv)j,k
ρj,k

, pj,k =
1

Γj,k

[
Ej,k −

(
(ρu)j,k

)2
+
(
(ρv)j,k

)2

2ρj,k
−Πj,k

]
,

and then construct the linear pieces to approximate the primitive variables V = (ρ, u, v, p,Γ,Π)>:

Ṽj,k(x, y) = Vj,k + (Vx)j,k(x− xj) + (Vy)j,k(y − yk), (x, y) ∈ Cj,k, (3.7)

where Vj,k := (ρj,k, uj,k, vj,k, pj,k,Γj,k,Πj,k)
> and (Vx)j,k and (Vy)j,k are the slopes, which are sup-

posed to be computed using a nonlinear limiter.
As in the 1-D case, we use different limiters near and away from the material interfaces, which

need to be detected. In the two-fluid case, we check whether

(Γj.k − Γ̂)(Γj+1,k − Γ̂) < 0, (3.8)

where, as before, Γ̂ = (ΓI + ΓII)/2. If (3.8) is satisfied, we then use the overcompressive SBM
limiter,

(Vx)`,k = φSBM
θ,τ

(
V `+1,k −V `,k

V `,k −V `−1,k

)
V `+1,k −V `,k

∆x
, (3.9)

for ` = j − 1, j, j + 1, and j + 2. In (3.9), the function φSBM
θ,τ (r), given by (2.15), is applied in a

componentwise manner with τ = −0.5 and θ = 1.3. Otherwise, that is, away from the material
interface, we use a dissipative generalized minmod limiter which is also given by the same formulae
(3.9), (2.15), but with τ = 0.5 and θ = 1.3. We proceed similarly in the y-direction: we use

(Vy)j,m = φSBM
θ,τ

(
V j,m+1 −V j,m

V j,m −V j,m−1

)
V j,m+1 −V j,m

∆y
, (3.10)

with τ = −0.5 and θ = 1.3 for m = k − 1, k, k + 1, and k + 2 if

(Γj,k − Γ̂)(Γj,k+1 − Γ̂) < 0, (3.11)

is satisfied, and with τ = 0.5 and θ = 1.3 otherwise.
Equipped with (Vx)j,k and (Vy)j,k, we use (3.7) to obtain

V −
j+ 1

2
,k

= V j,k +
∆x

2
(Vx)j,k, V +

j+ 1
2
,k

= V j+1,k −
∆x

2
(Vx)j+1,k,

V −
j,k+ 1

2

= V j,k +
∆y

2
(Vy)j,k, V +

j,k+ 1
2

= V j,k+1 −
∆y

2
(Vy)j,k+1,

and then the corresponding point values of the conservative variables U are

U±`,m =
(
ρ±`,m, ρ

±
`,mu

±
`,m, ρ

±
`,mv

±
`,m, E

±
`,m,Γ

±
`,m,Π

±
`,m

)>
,

for (`,m) = (j + 1
2
, k) and (j, k + 1

2
). Here, E±`,m = Γ±`,mp

±
`,m + ρ±`,m((u±`,m)2 + (v±`,m)2)/2 + Π±`,m.
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The global fluxes K±
j+ 1

2
,k

and Lj,k+ 1
2

in (3.5)–(3.6) are obtained using the relations in (3.2),

namely, by
K±

j+ 1
2
,k

= F±
j+ 1

2
,k
−R±

j+ 1
2
,k
, L±

j,k+ 1
2

= G±
j,k+ 1

2

− S±
j,k+ 1

2

,

where F±
j+ 1

2
,k

:= F (U±
j+ 1

2
,k

), G±
j,k+ 1

2

:= G(U±
j,k+ 1

2

), and the point values of the global variables

R and S are computed as follows. First, we set x̂ = x 1
2

and ŷ = y 1
2

so that R−1
2
,k

:= 0 and

S−
j, 1

2

:= 0. We then evaluate R+
1
2
,k

= BΨ, 1
2
,k and S+

j, 1
2

= BΨ,j, 1
2

and recursively compute the rest

of the required point values:

R−
j+ 1

2
,k

= R+
j− 1

2
,k

+ Bx
j,k, R+

j+ 1
2
,k

= R−
j+ 1

2
,k

+ BΨ,j+ 1
2
,k, j = 1, . . . , Nx,

S−
j,k+ 1

2

= S+
j,k− 1

2

+ By
j,k, S+

j,k+ 1
2

= S−
j,k+ 1

2

+ BΨ,j,k+ 1
2
, k = 1, . . . , Ny.

Here, Bx
j,k, BΨ,j+ 1

2
,k, B

y
j,k, and BΨ,j,k+ 1

2
,k are evaluated precisely the same way as in §2.1.1:

Bx
j,k =

(
0, 0, 0, 0,

Γ−
j+ 1

2
,k

+ Γ+
j− 1

2
,k

2

(
u−
j+ 1

2
,k
− u+

j− 1
2
,k

)
,
Π−
j+ 1

2
,k

+ Π+
j− 1

2
,k

2

(
u−
j+ 1

2
,k
− u+

j− 1
2
,k

))>
,

BΨ,j+ 1
2
,k =

(
0, 0, 0, 0,

Γ+
j+ 1

2
,k

+ Γ−
j+ 1

2
,k

2

(
u+
j+ 1

2
,k
− u−

j+ 1
2
,k

)
,
Π+
j+ 1

2
,k

+ Π−
j+ 1

2
,k

2

(
u+
j+ 1

2
,k
− u−

j+ 1
2
,k

))>
,

By
j,k =

(
0, 0, 0, 0,

Γ−
j,k+ 1

2

+ Γ+
j,k− 1

2

2

(
v−
j,k+ 1

2

− v+
j,k− 1

2

)
,
Π−
j,k+ 1

2

+ Π+
j,k− 1

2

2

(
v−
j,k+ 1

2

− v+
j,k− 1

2

))>
,

BΨ,j,k+ 1
2

=
(

0, 0, 0, 0,
Γ+
j,k+ 1

2

+ Γ−
j,k+ 1

2

2

(
v+
j,k+ 1

2

− v−
j,k+ 1

2

)
,
Π+
j,k+ 1

2

+ Π−
j,k+ 1

2

2

(
v+
j,k+ 1

2

− v−
j,k+ 1

2

))>
.

Finally, the one-sided local-speeds of propagation a±
j+ 1

2
,k

and b±
j,k+ 1

2

can be estimated by

a+
j+ 1

2
,k

= max
{
u−
j+ 1

2
,k

+ c−
j+ 1

2
,k
, u+

j+ 1
2
,k

+ c+
j+ 1

2
,k
, 0
}
,

a−
j+ 1

2
,k

= min
{
u−
j+ 1

2
,k
− c−

j+ 1
2
,k
, u+

j+ 1
2
,k
− c+

j+ 1
2
,k
, 0
}
,

b+
j,k+ 1

2

= max
{
v−
j,k+ 1

2

+ c−
j,k+ 1

2

, v+
j,k+ 1

2

+ c+
j,k+ 1

2

, 0
}
,

b−
j,k+ 1

2

= min
{
v−
j,k+ 1

2

− c−
j,k+ 1

2

, v+
j,k+ 1

2

− c+
j,k+ 1

2

, 0
}
.

3.1 “Built-in” Anti-Diffusion

In this section, we discuss the derivation of the “built-in” anti-diffusion terms qj+ 1
2
,k and qj,k+ 1

2

in (3.5)–(3.6) in a “dimension-by-dimension” manner following the idea introduced in [29].
In order to derive the formula for qj+ 1

2
,k, we consider the 1-D restriction of the system (3.1)–

(3.3) along the lines y = yk:

Ut(x, yk, t) + K
(
U(x, yk, t)

)
x

= 0, k = 1, . . . , Ny. (3.12)

We then can go through all of the steps in the derivation of the 1-D fully discrete scheme for the
systems in (3.12) following §2.2.1 up to (2.26), which now reads as

Ũ int
j+ 1

2
,k

(x, yk) =

U
int,L

j+ 1
2
,k, x < xj+ 1

2
,

U
int,R

j+ 1
2
,k, x > xj+ 1

2
,
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and the corresponding local conservation requirements (2.27) become

a+
j+ 1

2
,k
U

int,R

j+ 1
2
,k − a−j+ 1

2
,k
U

int,L

j+ 1
2
,k =

(
a+
j+ 1

2
,k
− a−

j+ 1
2
,k

)
U

int

j+ 1
2
,k. (3.13)

In addition to the six conservation constraints given by (3.13), we have six degrees of freedom,
which we use as in the 1-D case to enforce a sharp approximation of quasi 1-D isolated contact
waves propagating in the x-direction. To this end, we enforce the continuity of u and p across the
cell interfaces x = xj+ 1

2
by setting

(ρu) int,L

j+ 1
2
,k

ρ int,L

j+ 1
2
,k

=
(ρu) int,R

j+ 1
2
,k

ρ int,R

j+ 1
2
,k

,
1

Γ
int,L

j+ 1
2
,k

(
E

int,L

j+ 1
2
,k −

(
(ρu) int,L

j+ 1
2
,k

)2
+
(
(ρv) int,L

j+ 1
2
,k

)2

2ρ int,L

j+ 1
2
,k

−Π
int,L

j+ 1
2
,k

)

=
1

Γ
int,R

j+ 1
2
,k

(
E

int,R

j+ 1
2
,k −

(
(ρu) int,R

j+ 1
2
,k

)2
+
(
(ρv) int,R

j+ 1
2
,k

)2

2ρ int,R

j+ 1
2
,k

−Π
int,R

j+ 1
2
,k

)
,

and then proceed as in §2.2.1 to enforce sharp (yet, non-oscillatory) jumps of the ρ-, ρv-, Γ-, and
Π-components. This leads to the following formulae analogous to (2.30)–(2.31):

ρ int,L

j+ 1
2
,k

= ρ int
j+ 1

2
,k

+
δρ
j+ 1

2
,k

a−
j+ 1

2
,k

, ρ int,R

j+ 1
2
,k

= ρ int
j+ 1

2
,k

+
δρ
j+ 1

2
,k

a+
j+ 1

2
,k

,

(ρv) int,L

j+ 1
2
,k

= (ρv) int
j+ 1

2
,k

+
δρv
j+ 1

2
,k

a−
j+ 1

2
,k

, (ρv) int,R

j+ 1
2
,k

= (ρv) int
j+ 1

2
,k

+
δρv
j+ 1

2
,k

a+
j+ 1

2
,k

,

Γ
int,L

j+ 1
2
,k = Γ

int

j+ 1
2
,k +

δΓ
j+ 1

2
,k

a−
j+ 1

2
,k

, Γ
int,R

j+ 1
2
,k = Γ

int

j+ 1
2
,k +

δΓ
j+ 1

2
,k

a+
j+ 1

2
,k

,

Π
int,L

j+ 1
2
,k = Π

int

j+ 1
2
,k +

δΠ
j+ 1

2
,k

a−
j+ 1

2
,k

, Π
int,R

j+ 1
2
,k = Π

int

j+ 1
2
,k +

δΠ
j+ 1

2
,k

a+
j+ 1

2
,k

,

where

δρ
j+ 1

2
,k

= minmod
(
−a−

j+ 1
2
,k

[
ρ int
j+ 1

2
,k
−
(
ρint
j+ 1

2
,k

)
`

]
, a+

j+ 1
2
,k

[(
ρint
j+ 1

2
,k

)
r
− ρ int

j+ 1
2
,k

])
,

δρv
j+ 1

2
,k

= minmod
(
−a−

j+ 1
2
,k

[
(ρv) int

j+ 1
2
,k
−
(
(ρv)int

j+ 1
2
,k

)
`

]
, a+

j+ 1
2
,k

[(
(ρv)int

j+ 1
2
,k

)
r
− (ρv) int

j+ 1
2
,k

])
,

δΓ
j+ 1

2
,k

= minmod
(
−a−

j+ 1
2
,k

[
Γ

int

j+ 1
2
,k −

(
Γint
j+ 1

2
,k

)
`

]
, a+

j+ 1
2
,k

[(
Γint
j+ 1

2
,k

)
r
− Γ

int

j+ 1
2
,k

])
,

δΠ
j+ 1

2
,k

= minmod
(
−a−

j+ 1
2
,k

[
Π

int

j+ 1
2
,k −

(
Πint
j+ 1

2
,k

)
`

]
, a+

j+ 1
2
,k

[(
Πint
j+ 1

2
,k

)
r
− Π

int

j+ 1
2
,k

])
.

Here, the values
(
ρint
j+ 1

2
,k

)
`
,
(
ρint
j+ 1

2
,k

)
r
,
(
(ρv)int

j+ 1
2
,k

)
`
,
(
(ρv)int

j+ 1
2
,k

)
r
,
(
Γint
j+ 1

2
,k

)
`
,
(
Γint
j+ 1

2
,k

)
r
,
(
Πint
j+ 1

2
,k

)
`
,

and
(
Πint
j+ 1

2
,k

)
r
, are obtained using the Taylor expansions as it was done in (2.32).

We then proceed as in the remaining part of §2.2.1 and complete the derivation of the fully
discrete scheme (not shown here for the sake of brevity), and after this, we pass to the semi-discrete
limit and end up with the LD PCCU flux (3.5) with the following “built-in” anti-diffusion term:

qj+ 1
2
,k =

(
qρ
j+ 1

2
,k
, u∗

j+ 1
2
,k
qρ
j+ 1

2
,k
, qρv
j+ 1

2
,k
, qE
j+ 1

2
,k
, qΓ
j+ 1

2
,k
, qΠ
j+ 1

2
,k

)>
. (3.14)
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Here,

U ∗
j+ 1

2
,k

=
a+
j+ 1

2
,k
U+
j+ 1

2
,k
− a−

j+ 1
2
,k
U−
j+ 1

2
,k
−
(
K+

j+ 1
2
,k
−K−

j+ 1
2
,k

)
a+
j+ 1

2
,k
− a−

j+ 1
2
,k

, u∗
j+ 1

2
,k

=
(ρu)∗

j+ 1
2
,k

ρ∗
j+ 1

2
,k

,

qρ
j+ 1

2
,k

= minmod
(
−a−

j+ 1
2
,k

(
ρ∗
j+ 1

2
,k
− ρ−

j+ 1
2
,k

)
, a+

j+ 1
2
,k

(
ρ+
j+ 1

2
,k
− ρ∗

j+ 1
2
,k

))
,

qρv
j+ 1

2
,k

= minmod
(
−a−

j+ 1
2
,k

(
(ρv)∗

j+ 1
2
,k
− (ρv)−

j+ 1
2
,k

)
, a+

j+ 1
2
,k

(
(ρv)+

j+ 1
2
,k
− (ρv)∗

j+ 1
2
,k

))
,

qΓ
j+ 1

2
,k

= minmod
(
−a−

j+ 1
2
,k

(
Γ∗
j+ 1

2
,k
− Γ−

j+ 1
2
,k

)
, a+

j+ 1
2
,k

(
Γ+
j+ 1

2
,k
− Γ∗

j+ 1
2
,k

))
,

qΠ
j+ 1

2
,k

= minmod
(
−a−

j+ 1
2
,k

(
Π∗
j+ 1

2
,k
− Π−

j+ 1
2
,k

)
, a+

j+ 1
2
,k

(
Π+
j+ 1

2
,k
− Π∗

j+ 1
2
,k

))
,

qE
j+ 1

2
,k

=
a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k


(dΓ)−

j+ 1
2
,k

(
(ρv)∗

j+ 1
2
,k

+
qρv
j+ 1

2
,k

a+
j+ 1

2
,k

)2

2

(
ρ∗
j+ 1

2
,k

+
qρ
j+ 1

2
,k

a+
j+ 1

2
,k

) −

(dΓ)+
j+ 1

2
,k

(
(ρv)∗

j+ 1
2
,k

+
qρv
j+ 1

2
,k

a−
j+ 1

2
,k

)2

2

(
ρ∗
j+ 1

2
,k

+
qρ
j+ 1

2
,k

a−
j+ 1

2
,k

)


+

(
u∗
j+ 1

2
,k

)2

2
qρ
j+ 1

2
,k

+
qΓ
j+ 1

2
,k

Γ∗
j+ 1

2
,k

[
E∗
j+ 1

2
,k
−

(
(ρu)∗

j+ 1
2
,k

)2

2ρ∗
j+ 1

2
,k

− Π∗
j+ 1

2
,k

]
+ qΠ

j+ 1
2
,k
,

where

(dΓ)±
j+ 1

2
,k

= 1−
qΓ
j+ 1

2
,k

a±
j+ 1

2
,k

Γ∗
j+ 1

2
,k

.

Similarly, the “built-in” anti-diffusion term in the LD PCCU flux (3.6) is

qj,k+ 1
2

=
(
qρ
j,k+ 1

2

, qρu
j,k+ 1

2

, v∗
j,k+ 1

2
qρ
j,k+ 1

2

, qE
j,k+ 1

2
, qΓ
j,k+ 1

2
, qΠ
j,k+ 1

2

)>
. (3.15)

with

U ∗
j,k+ 1

2
=
b+
j,k+ 1

2

U+
j,k+ 1

2

− b−
j,k+ 1

2

U−
j,k+ 1

2

−
(
L+
j,k+ 1

2

−L−
j,k+ 1

2

)
b+
j,k+ 1

2

− b−
j,k+ 1

2

, v∗
j,k+ 1

2
=

(ρv)∗
j,k+ 1

2

ρ∗
j,k+ 1

2

,

qρ
j,k+ 1

2

= minmod
(
−b−

j,k+ 1
2

(
ρ∗
j,k+ 1

2
− ρ−

j,k+ 1
2

)
, b+
j,k+ 1

2

(
ρ+
j,k+ 1

2

− ρ∗
j,k+ 1

2

))
,

qρu
j,k+ 1

2

= minmod
(
−b−

j,k+ 1
2

(
(ρu)∗

j,k+ 1
2
− (ρu)−

j,k+ 1
2

)
, b+
j,k+ 1

2

(
(ρu)+

j,k+ 1
2

− (ρu)∗
j,k+ 1

2

))
,

qΓ
j,k+ 1

2
= minmod

(
−b−

j,k+ 1
2

(
Γ∗
j,k+ 1

2
− Γ−

j,k+ 1
2

)
, b+
j,k+ 1

2

(
Γ+
j,k+ 1

2

− Γ∗
j,k+ 1

2

))
,

qΠ
j,k+ 1

2
= minmod

(
−b−

j,k+ 1
2

(
Π∗
j,k+ 1

2
− Π−

j,k+ 1
2

)
, b+
j,k+ 1

2

(
Π+
j,k+ 1

2

− Π∗
j,k+ 1

2

))
,

qE
j,k+ 1

2
=

b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2


(dΓ)−

j,k+ 1
2

(
(ρu)∗

j,k+ 1
2

+
qρu
j,k+ 1

2

b+
j,k+ 1

2

)2

2

(
ρ∗
j,k+ 1

2

+
qρ
j,k+ 1

2

b+
j,k+ 1

2

) −

(dΓ)+
j,k+ 1

2

(
(ρu)∗

j,k+ 1
2

+
qρu
j,k+ 1

2

b−
j,k+ 1

2

)2

2

(
ρ∗
j,k+ 1

2

+
qρ
j,k+ 1

2

b−
j,k+ 1

2

)

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+

(
v∗
j,k+ 1

2

)2

2
qρ
j,k+ 1

2

+
qΓ
j,k+ 1

2

Γ∗
j,k+ 1

2

[
E∗
j,k+ 1

2
−

(
(ρv)∗

j,k+ 1
2

)2

2ρ∗
j,k+ 1

2

− Π∗
j,k+ 1

2

]
+ qΠ

j,k+ 1
2
,

where

(dΓ)±
j,k+ 1

2

= 1−
qΓ
j,k+ 1

2

b±
j,k+ 1

2

Γ∗
j,k+ 1

2

.

Remark 3.1 As in [29], the computation of numerical fluxes in (3.5) should be desingularized to
avoid division by zero or very small numbers. First, if a+

j+ 1
2
,k
< ε0 and a−

j+ 1
2
,k
> −ε0 for a small

positive ε0, we replace the flux Kj+ 1
2
,k with

Kj+ 1
2
,k =

K
(
U−
j+ 1

2
,k

)
+ K

(
U+
j+ 1

2
,k

)
2

.

Similarly, if b+
j,k+ 1

2

< ε0 and b−
j,k+ 1

2

> −ε0, we replace the flux Lj,k+ 1
2

with

Lj,k+ 1
2

=
L
(
U−
j,k+ 1

2

)
+ L

(
U+
j,k+ 1

2

)
2

.

In addition, the computation of the energy numerical fluxes have to be desingularized even in the
case when only one of the local speeds is very small. In particular,

if a+
j+ 1

2
,k
< ε0 but a−

j+ 1
2
,k
< −ε0, we take K(4)

j+ 1
2
,k

= u−
j+ 1

2
,k

(
E−
j+ 1

2
,k

+ p−
j+ 1

2
,k

)
;

if a−
j+ 1

2
,k
> −ε0 but a+

j+ 1
2
,k
> ε0, we take K(4)

j+ 1
2
,k

= u+
j+ 1

2
,k

(
E+
j+ 1

2
,k

+ p+
j+ 1

2
,k

)
;

if b+
j,k+ 1

2

< ε0 but b−
j,k+ 1

2

< −ε0, we take L(4)

j,k+ 1
2

= v−
j,k+ 1

2

(
E−
j,k+ 1

2

+ p−
j,k+ 1

2

)
;

if b−
j,k+ 1

2

> −ε0 but b+
j,k+ 1

2

> ε0, we take L(4)

j,k+ 1
2

= v+
j,k+ 1

2

(
E+
j,k+ 1

2

+ p+
j,k+ 1

2

)
.

As in the 1-D case, we take ε0 = 10−12 in all of the numerical examples.

3.2 Flux Globalization Based LD Ai-WENO PCCU Scheme

In this section, we extend the 2-D second-order flux globalization based LD PCCU schemes from
§3.1 to the fifth order of accuracy within the A-WENO framework.

The semi-discrete fifth-order LD Ai-WENO PCCU scheme for the 2-D quasi-conservative sys-
tem (3.1)–(3.2) reads as

d

dt
Uj,k = −

Hx
j+ 1

2
,k −Hx

j− 1
2
,k

∆x
−

Hy

j,k+ 1
2

−Hy

j,k− 1
2

∆y
, (3.16)

where the fifth-order numerical fluxes Hx
j+ 1

2
,k and Hy

j,k+ 1
2

are defined by

Hx
j+ 1

2
,k = Kj+ 1

2
,k −

∆x

24
(Kxx)j+ 1

2
,k +

7(∆x)3

5760
(Kxxxx)j+ 1

2
,k,

Hy

j,k+ 1
2

= Lj,k+ 1
2
− ∆y

24
(Lyy)j,k+ 1

2
+

7(∆y)3

5760
(Lyyyy)j,k+ 1

2
.

(3.17)
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Here, Kj+ 1
2
,k and Lj,k+ 1

2
are the finite-volume fluxes (3.5), and (Kxx)j+ 1

2
,k, (Kxxxx)j+ 1

2
,k, (Lyy)j,k+ 1

2
,

and (Lyyyy)j,k+ 1
2

are approximations of the second- and fourth-order spatial derivatives of K at

(x, y) = (xj+ 1
2
, yk) and L at (x, y) = (xj, yk+ 1

2
), respectively. We compute these quantities using

the finite-difference approximations analogous to (2.52):

(Kxx)j+ 1
2
,k =

1

12(∆x)2

[
−Kj− 3

2
,k + 16Kj− 1

2
,k − 30Kj+ 1

2
,k + 16Kj+ 3

2
,k −Kj+ 5

2
,k

]
,

(Kxxxx)j+ 1
2
,k =

1

(∆x)4

[
Kj− 3

2
,k − 4Kj− 1

2
,k + 6Kj+ 1

2
,k − 4Kj+ 3

2
,k + Kj+ 5

2
,k

]
,

(Lyy)j,k+ 1
2

=
1

12(∆y)2

[
−Lj,k− 3

2
+ 16Lj,k− 1

2
− 30Lj,k+ 1

2
+ 16Lj,k+ 3

2
−Lj,k+ 5

2

]
,

(Lyyyy)j,k+ 1
2

=
1

(∆y)4

[
Lj,k− 3

2
− 4Lj,k− 1

2
+ 6Lj,k+ 1

2
− 4Lj,k+ 3

2
+ Lj,k+ 5

2

]
.

As in the 1-D case, the resulting semi-discrete scheme (3.16)–(3.17) is fifth-order accurate
provided the point values U±

j+ 1
2
,k

and U±
j,k+ 1

2

are calculated using a fifth-order interpolation. To

this end, we apply the recently proposed fifth-order Ai-WENO-Z interpolation [14, 31, 46], which
can be performed in the x- and y-directions similarly to the 1-D case discussed in Appendix A;
we omit the details for the sake of brevity.

Remark 3.2 As in the 1-D case, one needs to apply the Ai-WENO-Z interpolation procedure in
the local characteristic variables to reduce the magnitude of the numerical oscillations. In Appendix
B, we provide a detailed explanation on how to apply the LCD to the 2-D system (3.1)–(3.3).

4 Numerical Examples

In this section, we apply the developed schemes to several 1-D and 2-D numerical examples and
compare the performance of the second-order flux globalization based PCCU, the second-order flux
globalization based LD PCCU, and the fifth-order flux globalization based LD Ai-WENO PCCU
schemes, which will be referred to as the PCCU, LD PCCU, and Ai-WENO schemes, respectively.

In all of the numerical examples, we have solved the ODE systems (2.2), (2.50), (3.4), and
(3.16) using the three-stage third-order strong stability preserving (SSP) Runge-Kutta method
(see, e.g., [16, 17]) and used the CFL number 0.45.

4.1 One-Dimensional Examples

Example 1—“Shock-Bubble” Interaction

In the first example, we consider the “shock-bubble” interaction problem, which is a two-fluid
modification of a single-fluid example from [29]. The initial data are given by

(ρ, u, p; γ, π∞)(x, 0) =


(13.1538, 0, 1; 5/3, 0), |x| < 0.25,

(1.3333,−0.3535, 1.5; 1.4, 0), x > 0.75,

(1, 0, 1; 1.4, 0), otherwise,



22 S. Chu, A. Kurganov, & R. Xin

which correspond to a left-moving shock, initially located at x = 0.75, and a resting “bubble”
with a radius of 0.25, initially located at the origin. These inital data are considered in the
computational domain [−1, 2] subject to the solid wall boundary conditions imposed at both
x = −1 and x = 2.

We apply the studied PCCU, LD PCCU, and Ai-WENO schemes to this initial-boundary
value problem and compute its numerical solutions until the final time t = 3 on a uniform mesh
with ∆x = 1/100. The obtained densities and velocities are presented in Figures 4.1 and 4.2
together with the reference solution computed by the PCCU scheme on a much finer mesh with
∆x = 1/2000. As one can see, the LD PCCU scheme achieves sharper resolution than the PCCU
one, and the use of a fifth-order Ai-WENO scheme further enhances the resolution.

Figure 4.1: Example 1: Density ρ (left) and zoom at x ∈ [−0.55,−0.4] (right) .

Figure 4.2: Example 1: Velocity u (left) and zoom at x ∈ [−0.2, 0.9] (right).

Example 2—Water-Air “Shock-Bubble” Interaction

In the second 1-D example, which is a 1-D modification of an example from [8], we consider a gas-
liquid multifluid system, where the liquid component is modeled by the EOS (2.9) with π∞ � 1.
The initial conditions,

(ρ, u, p; γ, π∞) =


(0.05, 0, 1; 1.4, 0), |x− 6| < 3,

(1.325,−68.525, 19153; 4.4, 6000), x > 11.4,

(1, 0, 1; 4.4, 6000), otherwise,
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correspond to the left-moving shock, initially located at x = 11.4, and a resting air “bubble” with
a radius 3, initially located at x = 6. The initial conditions are prescribed in the computational
domain [0, 18] subject to the free boundary conditions.

We compute the numerical solution until the final time t = 0.045 on a uniform mesh with
∆x = 1/10 by the PCCU, LD PCCU, and Ai-WENO schemes and plot the obtained density in
Figure 4.3 together with the reference solution computed by the PCCU scheme on a much finer
mesh with ∆x = 1/400. As one can observe, the LD PCCU solution achieves sharper resolution
(especially of the contact wave located at about x = 3) compared with its PCCU counterpart, but
it produces certain oscillations. The Ai-WENO scheme, on the other hand, achieves even higher
resolution and the obtained fifth-order results are oscillation-free. We believe that this is thanks
to the fact that the Ai-WENO-Z interpolation is performed using the LCD.

Figure 4.3: Example 2: Density ρ (left) and zoom at x ∈ [2.5, 4.8] (right).

Example 3—Water-Air Model With a Very Stiff Equation of State

In the last 1-D example taken from [2, 10], we consider another gas-liquid multifluid system with
the water component modeled using even stiffer EOS than the one used in Example 2. The initial
conditions that correspond to a severe water-air shock tube problem,

(ρ, u, p; γ, π∞) =

{
(1000, 0, 109; 4.4, 6 · 108), x < 0.7,

(50, 0, 105; 1.4, 0), x > 0.7,

are prescribed in the computational domain [0, 1] subject to the free boundary conditions.
We compute the numerical solutions by the studied PCCU, LD PCCU, and Ai-WENO schemes

until the final time t = 0.00025 on a uniform mesh with ∆x = 1/400. The obtained densities are
shown in Figure 4.4 along with the reference solution computed by the PCCU scheme on a much
finer mesh with ∆x = 1/6400. One can observe that all of the studied schemes produce non-
oscillatory numerical solutions, and the Ai-WENO solution is slightly sharper than the solutions
computed by the PCCU and LD PCCU schemes.

4.2 Two-Dimensional Examples

In this section, we present four 2-D numerical examples. In all of them, we plot the Schlieren
images of the magnitude of the density gradient field, |∇ρ|. To this end, we have used the
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Figure 4.4: Example 3: Density ρ (left) and zoom at [0.79, 0.87] (right).

following shading function:

exp

(
− 80|∇ρ|

max(|∇ρ|)

)
,

where the numerical derivatives of the density are computed using standard central differencing.

Example 4—Shock-Helium Bubble Interaction

In the first 2-D example taken from [10, 40], a shock wave in the air hits the light resting bubble
which contains helium. We take the following initial conditions:

(ρ, u, v, p; γ, p∞) =


(4/29, 0, 0, 1; 5/3, 0), in region A,

(1, 0, 0, 1; 1.4, 0), in region B,

(4/3,−0.3535, 0, 1.5; 1.4, 0), in region C,

where regions A, B, and C are outlined in Figure 4.5, and the computational domain is [−3, 1]×
[−0.5, 0.5]. We impose the solid wall boundary conditions on the top and bottom and the free
boundary conditions on the left and right edges of the computational domain.

Figure 4.5: Initial setting for the 2-D numerical examples.

We compute the numerical solutions until the final time t = 3 on a uniform mesh with ∆x =
∆y = 1/500. In Figures 4.6 and 4.7, we present different stages of the shock-bubble interaction
computed by the PCCU, LD PCCU, and Ai-WENO schemes. Notice that the bubble changes
its shape and propagates to the left, but in order to focus on the details of the bubble structure,
we only zoom at [σ, σ + 1] × [−0.5, 0.5] square area containing the bubble (σ is decreasing in
time from -0.5 to -1.6). As one can observe from the numerical results, the bubble interface
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develops very complex structures after the bubble is hit by the shock, especially at large times.
The obtained results are in a good agreement with the experimental findings presented in [18] and
the numerical results reported in [9, 10, 40]. At the same time, one can see that at a small time
t = 0.5, the resolution of the bubble interface is significantly improved by the use of the LD PCCU
and especially the Ai-WENO schemes. At larger times, the interface develops instabilities which
are smeared by a more dissipative PCCU scheme. The differences in the achieved resolution of
the small solution structures become even more pronounced at the larger times t = 2, 2.5, and
especially at t = 3. This clearly indicates that the LD PCCU scheme outperforms the PCCU
one, and the further improvement in the Ai-WENO results is much more obvious than in the 1-D
examples.

Figure 4.6: Example 4: Shock-helium bubble interaction by the PCCU (left column), LD PCCU (middle
column), and Ai-WENO (right column) schemes at times t = 0.5, 1, and 1.5.
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Figure 4.7: Same as in Figure 4.6, but at larger times t = 2, 2.5, and 3.

Example 5—Shock-R22 Bubble Interaction

In the second 2-D example also taken from [10,40], a shock wave in the air hits the heavy resting
bubble which contains R22. The initial conditions are

(ρ, u, v, p; γ, π∞) =


(3.1538, 0, 0, 1; 1.249, 0), in region A,

(1, 0, 0, 1; 1.4, 0), in region B,

(4/3,−0.3535, 0, 1.5; 1.4, 0), in region C.

The regions A, B, and C are the same as in Example 4 and they are specified in Figure 4.7. In
this example, we impose the same boundary conditions and use the same computational domain
as in Example 4.
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We compute the numerical solutions until the final time t = 3 on a uniform mesh with ∆x =
∆y = 1/500. In Figures 4.8 and 4.9, we present different stages of the shock-bubble interaction
computed by the PCCU, LD PCCU, and Ai-WENO schemes. As one can see, the bubble changes
its shape and propagates to the left, and in order to focus on the details of the bubble structure, we
only zoom at [σ, σ+1]× [−0.5, 0.5] square area containing the bubble (σ is decreasing in time from
-0.5 to -1.15). Compared with Example 4, the bubble moves to the left a little slower and develops
totally different structures as the R22 is heavier than the Helium. The obtained results are in a
good agreement with the numerical results reported in [9,10,40]. Similar to Example 4, at a small
time t = 0.5, the resolution of the bubble interface is significantly improved by the use of either the
LD PCCU or Ai-WENO schemes, and the improvement in this example is even more pronounced.
By the time t = 1, the interface develop instabilities which are smeared by a more dissipative
PCCU scheme. As time progresses, the solutions develop very complex small structures, which
are better resolved by the schemes containing smaller amount of numerical dissipation, namely,
by the LD PCCU and Ai-WENO schemes.

Figure 4.8: Example 5: Shock-R22 bubble interaction by the PCCU (left column), LD PCCU (middle
column), and Ai-WENO (right column) schemes at times t = 0.5 and 1.

Example 6—A Cylindrical Explosion Problem

In this 2-D example, which is a modification of an example from [52], we consider the case where
a cylindrical explosive source is located between an air-water interface and an impermeable wall.
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Figure 4.9: Same as in Figure 4.8, but at larger times t = 1.5, 2, 2.5, and 3.



Low-Dissipation Schemes for Compressible Multifluids 29

The initial conditions are given by

(ρ, u, v, p; γ, π∞) =


(1.27, 0, 0, 8290; 2, 0), (x− 5)2 + (y − 2)2 < 1,

(0.02, 0, 0, 1; 1.4, 0), y > 4,

(1, 0, 0, 1; 7.15, 3309), otherwise,

the solid wall boundary conditions are imposed at the bottom, and the free boundary conditions
are prescribed on the other sides of the computational domain [0, 10]× [0, 6].

Notice that the initial conditions contain three—not two—different fluids, and therefore we
need to modify the way the fluid interfaces are detected as the criteria (3.8) and (3.11) are applica-
ble in the two-fluid case only. We first set ΓI = 1/(γI−1), ΓII = 1/(γII − 1), and ΓIII = 1/(γIII−1),
where γI = 2, γII = 1.4, and γIII = 7.15 are the specific heat ratios for the three fluids. We then
introduce Γ̂1 := (ΓI + ΓIII)/2, Γ̂2 := (ΓII + ΓIII)/2, and replace the conditions (3.8) and (3.11) with

(Γj,k − Γ̂1)(Γj+1,k − Γ̂1) < 0 or (Γj,k − Γ̂2)(Γj+1,k − Γ̂2) < 0

and
(Γj,k − Γ̂1)(Γj,k+1 − Γ̂1) < 0 or (Γj,k − Γ̂2)(Γj,k+1 − Γ̂2) < 0

respectively.
We compute the numerical solutions until the final time t = 0.02 on a uniform mesh with

∆x = ∆y = 1/80 by the studied PCCU, LD PCCU, and Ai-WENO schemes. In Figure 4.10,
we present time snapshots of the obtained results, which qualitatively look very similar to the
numerical results reported in [52]. As one can see, the LD PCCU scheme captures both the
material interfaces and many of the developed wave structures substantially sharper than the
PCCU scheme and the use of the Ai-WENO scheme further enhances the resolution. In particular,
one can observe more pronounced small structures in the Ai-WENO solution (especially inside the
bubble) at the large time t = 0.02; see Figure 4.11, where we zoom at the bubble area. This
example, once again, clearly indicates that the LD PCCU and Ai-WENO schemes outperform the
PCCU one.

Example 7—Water-Air Shock-Bubble Interaction

In the last 2-D example, which is taken from [8], we consider the interaction of a shock in water
with a gas bubble. The initial conditions

(ρ, u, v, p; γ, π∞) =


(0.0012, 0, 0, 1; 1.4, 0), (x− 6)2 + (y − 6)2 < 9,

(1.325,−68.525, 0, 19153; 4.4, 6000), x > 11.4,

(1, 0, 0, 1; 4.4, 6000), otherwise,

correspond to a cylindrical air bubble impacted by a Mach 1.72 shock initiated in water. In this
example, the initial data are prescribed in the computational domain [0, 12]× [0, 12] with the solid
wall boundary conditions imposed on the top and bottom and the free boundary conditions on
the left and right edges of the computational domain.

We compute the numerical solutions by the studied PCCU, LD PCCU, and Ai-WENO schemes
until the final time t = 0.045 on a uniform mesh with ∆x = ∆y = 3/200. In Figures 4.12 and 4.13,
we present different stages of the interaction process. As one can see, the bubble containing air will
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Figure 4.10: Example 6: Solutions computed by the PCCU (left column), LD PCCU (middle column),
and Ai-WENO (right column) schemes at times t = 0.008, 0.014, and 0.02.

be compressed by the water, propagates to the left, and changes its shape until losing its integrity
and breaking up. The obtained results are in a good qualitative agreement with the numerical
results reported in [8]. As in the previous examples, the resolution of the bubble interface is
significantly improved by the use of the LD PCCU and Ai-WENO schemes, especially for the
small times t = 0.0204, 0.0305, and 0.0368; see Figure 4.12. At the same time, the differences near
the bubble interfaces between the LD PCCU and Ai-WENO solutions are minor.

Remark 4.1 In order to preserve the positivity of the pressure computed by the Ai-WENO scheme,
we have used the following algorithm. We first detect the material interfaces by (3.8) and (3.11)
and then switch to the second-order LD PCCU scheme (with the one-sided point values computed
by the SBM limiter (2.15), (3.7), (3.9), (3.10) in the overcompressive regime with θ = 1.3 and
τ = −0.5) in the neighboring four cells at each side of the interface. This results in a hybrid
“mixed-order” scheme, which still achieves higher resolution compared with the second-order LD
PCCU scheme.
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Figure 4.11: Example 6: Solutions computed by the PCCU (left), LD PCCU (middle), and Ai-WENO
(right) schemes at time t = 0.02; zoom at the bubble area.

5 Conclusion

In this paper, we have developed flux globalization based low-dissipation (LD) path-conservative
central-upwind (PCCU) schemes for one- (1-D) and two-dimensional (2-D) compressible multiflu-
ids. The LD PCCU schemes are based on the flux globalization based PCCU schemes and employ
the recently proposed LDCU fluxes to reduce the numerical dissipation present in the original
PCCU schemes. In order to further enhance the resolution of material interfaces, we track their
locations and use the overcompressive SBM limiter in their neighborhoods, while in the rest of
the computational domain, a dissipative generalized minmod limiter is utilized. The new second-
order finite-volume method is then extended to the fifth order of accuracy via the finite-difference
A-WENO framework. We have applied the developed schemes to a number of 1-D and 2-D ex-
amples and the obtained numerical results clearly demonstrate that both of the LD PCCU and
LD A-WENO schemes outperform the flux globalization based PCCU scheme that employs the
original central-upwind numerical flux from [25]. At the same time, these examples show that the
fifth-order LD Ai-WENO scheme enhances the resolution achieved by the second-order LD PCCU
scheme.
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A 1-D Fifth-Order Ai-WENO-Z Interpolation

In this appendix, we briefly describe the fifth-order Ai-WENO-Z interpolation recently introduced
in [14,31,46].

Assume that the point values Wj+` of a certain quantity W at the uniform grid points x = xj+`,
` = −2, . . . , 3 are available. We now show how to obtain an interpolated left-sided value of W
at x = xj+ 1

2
, denoted by W−

j+ 1
2

. The right-sided value W+
j+ 1

2

can then be obtained in the mirror-

symmetric way.
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Figure 4.12: Example 7: Shock-air bubble interaction computed by the PCCU (left column), LD PCCU
(middle column), and Ai-WENO (right column) schemes at times t = 0.0204, 0.0305, and 0.0368.

The value W−
j+ 1

2

is calculated using a weighted average of the three parabolic interpolants P0(x),

P1(x), and P2(x) obtained using the stencils [xj−2, xj−1, xj], [xj−1, xj, xj+1], and [xj, xj+1, xj+2],
respectively:

W−
j+ 1

2

=
2∑

k=0

ωkPk
(
xj+ 1

2

)
,

where

P0(xj+ 1
2
) =

3

8
Wj−2 −

5

4
Wj−1 +

15

8
Wj, P1(xj+ 1

2
) = −1

8
Wj−1 +

3

4
Wj +

3

8
Wj+1,

P2(xj+ 1
2
) =

3

8
Wj +

3

4
Wj+1 −

1

8
Wj+2,
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Figure 4.13: Example 7: Same as in Figure 4.12, but at larger times t = 0.0405 and 0.045.

and the Ai-weights ωk are computed by

ωk =
αk

α0 + α1 + α2

, αk = dk

[
1 +

(
τ5

βk + εµ2
j

)r ]
, k = 0, 1, 2, (A.1)

with d0 = 1
16

, d1 = 5
8
, and d2 = 5

16
. The smoothness indicators βk for the corresponding parabolic

interpolants Pk(x) are given by

β0 =
13

12

(
Wj−2 − 2Wj−1 +Wj

)2
+

1

4

(
Wj−2 − 4Wj−1 + 3Wj

)2
,

β1 =
13

12

(
Wj−1 − 2Wj +Wj+1

)2
+

1

4

(
Wj−1 −Wj+1

)2
,

β2 =
13

12

(
Wj − 2Wj+1 +Wj+2

)2
+

1

4

(
3Wj − 4Wj+1 +Wj+2

)2
.

Finally, in formula (A.1), τ5 = |β2−β0|, µj = 1
5

∑j+2
`=j−2 |W`−Ŵj|+10−40 with Ŵj := 1

5

∑j+2
`=j−2W`,

and in all of the numerical examples, we have chosen r = 2 and ε = 10−12.

A.1 1-D Local Characteristic Decomposition

In §2.3, the Ai-WENO-Z interpolant is applied to the local characteristic variables, which are
obtained using the LCD. To this end, we first rewrite the studied γ-based multifluid system in
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terms of the primitive variables V = (ρ, u, p,Γ,Π)>:

Vt +AVx = 0, A :=



u ρ 0 0 0

0 u
1

ρ
0 0

0 γ(p+ π∞) u 0 0

0 0 0 u 0

0 0 0 0 u


,

and introduce the locally averaged matrices

Âj+ 1
2

:=



û ρ̂ 0 0 0

0 û
1

ρ̂
0 0

0 γ̂(p̂+ π̂∞) û 0 0

0 0 0 û 0

0 0 0 0 û


, (A.2)

where (̂·) stands for the following averages (see [23]):

ρ̂ =
√
ρjρj+1, û =

√
ρjuj +

√
ρj+1uj+1

√
ρj +

√
ρj+1

, p̂ =

√
ρjpj +

√
ρj+1pj+1

√
ρj +

√
ρj+1

,

γ̂ =

√
ρjγj +

√
ρj+1γj+1

√
ρj +

√
ρj+1

, π̂∞ =

√
ρj(π∞)j +

√
ρj+1(π∞)j+1

√
ρj +

√
ρj+1

,

where γj = 1 + 1/Γj and (π∞)j = Πj/(1 + Γj).

We then compute the matrix Rj+ 1
2

composed of the right eigenvectors of Âj+ 1
2

and obtain

Rj+ 1
2

=



1

ĉ2
0 0 1

1

ĉ2

− 1

ρ̂ĉ
0 0 0

1

ρ̂ĉ

1 0 0 0 1

0 0 1 0 0

0 1 0 0 0


and R−1

j+ 1
2

=



0 − ρ̂ĉ
2

1

2
0 0

0 0 0 0 1

0 0 0 1 0

1 0 − 1

ĉ2
0 0

0
ρ̂ĉ

2

1

2
0 0


, (A.3)

where ĉ =
√
γ(p̂+ π̂∞)/ρ̂. Notice that all of the (̂·) quantities in (A.2)–(A.3) have to have a

subscript index, that is, (̂·) = (̂·)j+ 1
2
, but we have omitted it for the sake of brevity for all of the

quantities except for Âj+ 1
2
.

Finally, we introduce the local characteristic variables in the neighborhood of x = xj+ 1
2
:

Wj+` = R−1
j+ 1

2

Vj+`, ` = −2, . . . , 3,

and apply the Ai-WENO-Z interpolation to every component of W to obtain W±
j+ 1

2

, and then we

end up with
V ±
j+ 1

2

= Rj+ 1
2
W±

j+ 1
2

.
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B 2-D Local Characteristic Decomposition

In this appendix, we extend the 1-D LCD described in Appendix A.1 to the system (3.12), which
can be rewritten in terms of the primitive variables V = (ρ, u, v, p,Γ,Π)> as

Vt +AVx = 0, A :=



u ρ 0 0 0 0

0 u 0
1

ρ
0 0

0 0 u 0 0 0

0 γ(p+ π∞) 0 u 0 0

0 0 0 0 u 0

0 0 0 0 0 u


,

and introduce the locally averaged matrices

Âj+ 1
2
,k =



û ρ̂ 0 0 0 0

0 û 0
1

ρ̂
0 0

0 0 û 0 0 0

0 γ̂(p̂+ π̂∞) 0 û 0 0

0 0 0 0 û 0

0 0 0 0 0 û


,

where (̂·) stands for the following averages:

ρ̂ =
√
ρj,k ρj+1,k, û =

√
ρj,kuj,k +

√
ρj+1,kuj+1,k

√
ρj,k +

√
ρj+1,k

, p̂ =

√
ρj,kpj,k +

√
ρj+1,kpj+1,k

√
ρj,k +

√
ρj+1,k

,

γ̂ =

√
ρj,k γj,k +

√
ρj+1,k γj+1,k

√
ρj,k +

√
ρj+1,k

, π̂∞ =

√
ρj,k(π∞)j,k +

√
ρj+1,k(π∞)j+1,k

√
ρj,k +

√
ρj+1,k

,

with γj,k = 1 + 1/Γj,k and (π∞)j,k = Πj,k/(1 + Γj,k).

We then compute the matrices Rj+ 1
2
,k and R−1

j+ 1
2
,k

such that the matrix R−1
j+ 1

2
,k
Âj+ 1

2
,kRj+ 1

2
,k is

diagonal and obtain

Rj+ 1
2
,k =



1

ĉ2
0 0 0 1

1

ĉ2

− 1

ρ̂ĉ
0 0 0 0

1

ρ̂ĉ

0 0 0 1 0 0

1 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 0 0


and R−1

j+ 1
2
,k

=



0 − ρ̂ĉ
2

0
1

2
0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 1 0 0 0

1 0 0 − 1

ĉ2
0 0

0
ρ̂ĉ

2
0

1

2
0 0


.

Appendix A.1, we have omitted the (j + 1
2
, k) indices for all of the (̂·) quantities except for Âj+ 1

2
,k.



36 S. Chu, A. Kurganov, & R. Xin

Finally, given the matrices R−1
j+ 1

2
,k

and Rj+ 1
2
,k, we introduce the local characteristic variablesnin

the neighborhood of (x, y) = (xj+ 1
2
, yk):

Wj+`,k = R−1
j+ 1

2
,k
Vj+`,k, ` = −2, . . . , 3,

apply the Ai-WENO-Z interpolation to every component of W to obtain W±
j+ 1

2
,k

, and end up with

V ±
j+ 1

2
,k

= Rj+ 1
2
,kW

±
j+ 1

2
,k
.

Notice that the point values V ±
j,k+ 1

2

are obtained in a similar manner and we omit the details

for the sake of brevity.
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