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Abstract

We construct a new fifth-order flux globalization based well-balanced (WB) alternative
weighted essentially non-oscillatory (A-WENO) scheme for general nonconservative systems.
The proposed scheme is a higher-order extension of the WB path-conservative central-upwind
(PCCU) scheme recently proposed in [A. Kurganov, Y. Liu and R. Xin, J. Comput.
Phys., 474 (2023), Paper No. 111773]. We apply the new scheme to the nozzle flow system and
the two-layer shallow water equations. We conduct a series of numerical experiments, which
clearly demonstrate the advantages of using the fifth-order extension of the flux globalization
based WB PCCU scheme.
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1 Introduction

This paper is focused on the development of high-order well-balanced (WB) numerical methods
for the nonconservative hyperbolic systems, which in the one-dimensional (1-D) case read as

Ut + F (U)x = B(U)Ux. (1.1)

Here, x is the spatial variable, t is time, U ∈ Rd is a vector of unknowns, F : Rd → Rd is the
nonlinear flux function, and B ∈ Rd×d.

Developing a highly accurate numerical scheme for (1.1) is a challenging task due to the
presence of the nonconservative product terms on the right-hand side (RHS) of the studied system,
whose weak solutions can be understood as the Borel measures (see [15,27,28]) rather than in the
sense of distributions. In addition, a good scheme for (1.1) should be WB, that is, it should be

∗Department of Mathematics and Shenzhen International Center for Mathematics, Southern University of Sci-
ence and Technology, Shenzhen, 518055, China; chuss2019@mail.sustech.edu.cn

†Department of Mathematics, Shenzhen International Center for Mathematics, and Guangdong Provincial Key
Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shen-
zhen, 518055, China; alexander@sustech.edu.cn

‡Department of Mathematics, Southern University of Science and Technology, Shenzhen, 518055, China;
12331009@mail.sustech.edu.cn

1



2 S. Chu, A. Kurganov & R. Xin

capable of exactly preserving some of the physically relevant steady-state solutions of (1.1). As it
was shown in [23], for many nonconservative systems steady-state solutions satisfy

F (U)x −B(U)Ux = M(U)E(U)x = 0, (1.2)

where M ∈ Rd×d and E is the vector of equilibrium variables, which are constant at the steady
states.

A popular approach for developing accurate and WB numerical schemes for (1.1) is based on the
concept of weak Borel measure solutions, which leads to a class of path-conservative schemes; see,
e.g., [1,6–8,34–36] and references therein. One of these schemes, a second-order path-conservative
central-upwind (PCCU) scheme [7], is particularly simple as it is based on Riemann-problem-
solver-free central-upwind (CU) schemes, which were originally developed in [22,24,26] as a “black-
box” solver for general multidimensional hyperbolic systems. One of the drawbacks of the PCCU
schemes is that they can preserve simple steady states only. For instance, in the two-layer shallow
water equations, the PCCU schemes can only preserve the so-called “lake-at-rest” steady states.

In [23], path-conservative techniques were incorporated into the flux globalization framework,
which led to a flux globalization based WB PCCU scheme, which is capable of preserving a
much wider range of steady states while still accurately treating the nonconservative products.
In general, a flux globalization approach, which was introduced in [5, 11, 17, 18, 32], relies on the
following quasi-conservative form of (1.1):

Ut + K(U)x = 0, (1.3)

where K(U) is a global flux

K(U) = F (U )−R(U ), R(U) =

x∫
x̂

[B(U (ξ, t))Uξ(ξ, t)] dξ, (1.4)

and x̂ is an arbitrary number. The flux globalization based WB PCCU schemes are obtained
by applying the CU numerical flux to the semi-discretization of (1.3) and by using the path-
conservative technique to the evaluation of the integrals in (1.4). These schemes have been applied
to a variety of hyperbolic systems in [2–4, 9, 23]. However, all of these WB PCCU schemes are
only second-order accurate, which results in a limited resolution of certain complicated solution
structures unless very fine mesh is used. The goal of this paper is to extend the flux globalization
based WB PCCU schemes to the fifth order of accuracy via an alternative weighted essentially
non-oscillatory (A-WENO) framework.

In the past few decades, high-order finite-volume (FV) and finite-difference (FD) weighted
essentially non-oscillatory (WENO) schemes have gained their popularity due to their ability to
achieve high resolution. These schemes are based on high-order WENO reconstructions and inter-
polations; see the review papers [37,38] and referenced therein. A drawback of FV WENO schemes
is that they use FV WENO reconstructions, which are quite complicated and computationally ex-
pensive, especially in the multidimensional case. On the other hand, FD WENO schemes use 1-D
WENO interpolations even in the multidimensional case, which makes them substantially simpler
than their FV counterparts. The simplest and yet very accurate and powerful FD WENO schemes
are A-WENO schemes were proposed in [21]; see also [10, 31, 41–43]. A-WENO schemes employ
standard FV numerical fluxes (with no flux splitting required) and achieve high order of accuracy
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thanks to the higher-order correction terms. A-WENO schemes based on the CU numerical fluxes
have been introduced in [41,42] and extended to nonconservative systems in [12,13].

In this paper, we develop flux globalization based WB A-WENO schemes that employ CU
numerical fluxes and fifth-order path-conservative integration techniques. Our A-WENO schemes
utilize new higher-order correction terms, which we have recently introduced in [14]. The designed
schemes are then applied to the nozzle flow system and the two-layer shallow water equations. We
perform a series of numerical experiments, which clearly demonstrate that the proposed fifth-order
scheme achieves higher resolution than its second-order counterpart.

The paper is organized as follows. In §2, we give a brief overview of flux globalization based
WB PCCU schemes. In §3, we construct new flux globalization based WB A-WENO schemes and
then apply them to the nozzle flow system in §3.1 and the two-layer shallow water equations in
§3.2. In §4, we test the new schemes on a number of challenging numerical examples. Finally, in
§5, we give some concluding remarks.

2 Flux Globalization Based WB PCCU Schemes: an Overview

In this section, we give an overview of second-order flux globalization based WB PCCU schemes,
which were introduced in [23] for general nonconservative systems (1.1) written in an equivalent
quasi-conservative form (1.3)–(1.4).

We first introduce a uniform mesh consisting of the FV cells Cj := [xj− 1
2
, xj+ 1

2
] of size xj+ 1

2
−

xj− 1
2
≡ ∆x centered at xj = (xj− 1

2
+ xj+ 1

2
)/2, j = 1, . . . , N . We assume that at a certain time

level t, the approximate solution, realized in terms of the cell averages

U j(t) :≈ 1

∆x

∫
Cj

U(x, t) dx,

is available (in the rest of the paper, we will suppress the time-dependence of all of the indexed
quantities for the sake of brevity). We then evolve the cell averages U j in time by solving the
following system of ODEs:

d

dt
U j = −

KFV
j+ 1

2
−KFV

j− 1
2

∆x
, (2.1)

where KFV
j+ 1

2
are the WB PCCU numerical fluxes given by (see [23])

KFV
j+ 1

2
=
a+
j+ 1

2

K(U−
j+ 1

2

)− a−
j+ 1

2

K(U+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

(
Û+
j+ 1

2

− Û−
j+ 1

2

)
, (2.2)

U±
j+ 1

2

and Û±
j+ 1

2

are two slightly different approximations of the one-sided point values of U(xj+ 1
2
, t),

and a±
j+ 1

2

are the one-sided local speeds of propagation, which can be estimated using the eigen-

values λ1 < · · · < λd of the matrix A(U) := ∂F/∂U −B(U):

a−
j+ 1

2

= min
{
λ1
(
A(U−

j+ 1
2

)
)
, λ1
(
A(U+

j+ 1
2

)
), 0
}
, a+

j+ 1
2

= max
{
λd
(
A(U−

j+ 1
2

)
)
, λd
(
A(U+

j+ 1
2

)
)
, 0
}
.

Since K(U) is a global flux, one needs to use a certain quadrature to evaluate its global part
R(U). The quadrature should rely on the path-conservative technique and it also must be WB.
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To this end, we follow the approach introduced in [23] and compute

K(U±
j+ 1

2

) = F (U±
j+ 1

2

)−R(U±
j+ 1

2

) (2.3)

as follows.
First, in order to ensure the WB property of the resulting scheme, the point values U±

j+ 1
2

are

to be obtained with the help of a piecewise linear reconstruction of the equilibrium variables E:

E−
j+ 1

2

= Ej +
∆x

2
(Ex)j, E+

j+ 1
2

= Ej+1 −
∆x

2
(Ex)j+1, (2.4)

where Ej := E(U j) and the slopes (Ex)j are computed using a nonlinear limiter, for instance,
the generalized minmod one (see [30,33,39]):

(Ex)j = minmod

(
θ
Ej+1 −Ej

∆x
,
Ej+1 −Ej−1

2∆x
, θ

Ej −Ej−1

∆x

)
, θ ∈ [1, 2],

applied in a component-wise manner. Here,

minmod(c1, c2, . . .) =


min(c1, c2, . . .) if ci > 0, ∀i,
max(c1, c2, . . .) if ci < 0, ∀i,
0 otherwise,

and the parameter θ is used to control the amount of numerical dissipation present in the resulting
scheme: larger values of θ correspond to sharper but, in general, more oscillatory reconstructions.
The corresponding values U±

j+ 1
2

are then computed by solving the (nonlinear systems of) equations

E(U+
j+ 1

2

) = E+
j+ 1

2

and E(U−
j+ 1

2

) = E−
j+ 1

2

(2.5)

for U+
j+ 1

2

and U−
j+ 1

2

, respectively.

Equipped with U±
j+ 1

2

, we proceed with the evaluation of R(U±
j+ 1

2

). We select x̂ = x 1
2
, set

R(U−1
2

) := 0, evaluate

R(U+
1
2

) = BΨ, 1
2
, (2.6)

and then recursively obtain

R(U−
j+ 1

2

) = R(U+
j− 1

2

) + Bj, R(U+
j+ 1

2

) = R(U−
j+ 1

2

) + BΨ,j+ 1
2
, j = 1, . . . , N. (2.7)

In (2.6) and (2.7), BΨ,j+ 1
2

and Bj are obtained using a proper quadrature for the integrals in

BΨ,j+ 1
2

=

1∫
0

B
(
Ψj+ 1

2
(s)
)
Ψ′
j+ 1

2
(s) ds, Bj =

∫
Cj

B(U)Ux dx,

where Ψj+ 1
2
(s) = Ψj+ 1

2
(s;U−

j+ 1
2

,U+
j+ 1

2

) is a sufficiently smooth path connecting the states U−
j+ 1

2

and U+
j+ 1

2

, that is,

Ψj+ 1
2

: [0, 1]× Rd × Rd → Rd, Ψj+ 1
2
(0;U−

j+ 1
2

,U+
j+ 1

2

) = U−
j+ 1

2

, Ψj+ 1
2
(1;U−

j+ 1
2

,U+
j+ 1

2

) = U+
j+ 1

2

.
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In order to ensure the resulting scheme to be WB, one has to connect the left and right equilibrium
states E−

j+ 1
2

and E+
j+ 1

2

. We use a linear segment path

Ej+ 1
2
(s) = E−

j+ 1
2

+ s
(
E+
j+ 1

2

−E−
j+ 1

2

)
, s ∈ [0, 1],

which is then used together with (1.2) and trapezoidal quadrature to end up with

BΨ,j+ 1
2

= F+
j+ 1

2

− F−
j+ 1

2

− 1

2

[
M
(
U+
j+ 1

2

)
+M

(
U−
j+ 1

2

)](
E+
j+ 1

2

−E−
j+ 1

2

)
.

For Bj, we similarly have

Bj = F (U−
j+ 1

2

)− F (U+
j− 1

2

)−
∫
Cj

M(U)E(U)x dx

≈ F (U−
j+ 1

2

)− F (U+
j− 1

2

)− 1

2

[
M
(
U−
j+ 1

2

)
+M

(
U+
j− 1

2

)](
E−
j+ 1

2

−E+
j− 1

2

)
.

(2.8)

Finally, in (2.2), Û±
j+ 1

2

are obtained by solving modified versions of (2.5):

Ê(Û+
j+ 1

2

) = E+
j+ 1

2

and Ê(Û−
j+ 1

2

) = E−
j+ 1

2

.

Here, the functions Ê are the modifications of the functions E, which are made in such a way
that Û+

j+ 1
2

= Û−
j+ 1

2

as long as Ê+
j+ 1

2

= Ê−
j+ 1

2

and, at the same time, Û+
j+ 1

2

= U+
j+ 1

2

+O((∆x)2) and

Û−
j+ 1

2

= U−
j+ 1

2

+O((∆x)2) for smooth solutions.

3 Flux Globalization Based WB A-WENO Schemes

In this section, we extend the second-order WB PCCU schemes from §2 to the fifth order of
accuracy via the A-WENO framework:

dUj

dt
= −

Kj+ 1
2
−Kj− 1

2

∆x
, (3.1)

where Uj ≈ U(xj, t) and Kj+ 1
2

are the fifth-order A-WENO numerical fluxes:

Kj+ 1
2

= KFV
j+ 1

2
− (∆x)2

24
(Kxx)j+ 1

2
+

7(∆x)4

5760
(Kxxxx)j+ 1

2
.

Here, KFV
j+ 1

2
is the WB PCCU numerical flux introduced in §2, and the higher-order correction

terms (Kxx)j+ 1
2

and (Kxxxx)j+ 1
2

are FD approximations of the second- and fourth-order spatial

derivatives of K at x = xj+ 1
2
, respectively. We follow [14] and compute the correction terms using

the numerical fluxes, which have been already obtained:

(Kxx)j+ 1
2

=
1

12(∆x)2

[
−KFV

j− 3
2

+ 16KFV
j− 1

2
− 30KFV

j+ 1
2

+ 16KFV
j+ 3

2
−KFV

j+ 5
2

]
,

(Kxxxx)j+ 1
2

=
1

(∆x)4

[
KFV
j− 3

2
− 4KFV

j− 1
2

+ 6KFV
j+ 1

2
− 4KFV

j+ 3
2

+ KFV
j+ 5

2

]
.
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Finally, in order the resulting scheme to be fifth-order accurate, we apply the fifth-order affine-
invariant WENO-Z (Ai-WENO-Z) interpolation [16,29,40] to evaluate E±

j+ 1
2

(instead of the piece-

wise linear reconstruction (2.4)). In addition, the integral in (2.8) needs to be evaluated using
a quadrature, which is at least fifth-order accurate. In this paper, we use the Newton-Cotes
quadrature introduced in [13, (4.4)].

3.1 Application to the Nozzle Flow System

In this section, we apply the flux globalization based WB A-WENO scheme to the nozzle flow
system, which reads as (1.1) with

U =


σρ

σρu

σ

 , F (U) =


σρu

σρu2 + σp

0

 , B(U) =


0 0 0

0 0 p

0 0 0

 , p(ρ) = κργ, (3.2)

and admits steady-state solutions satisfying (1.2) with

M(U) :=


1 0 0

u σρ 0

0 0 1

 , E(U) =


q

E

0

 , q := σρu, E :=
u2

2
+

κγ

γ − 1
ργ−1. (3.3)

Here, ρ is the density, u is the velocity, p is the pressure, κ > 0 and 1 < γ < 5
3

are constants, and
σ = σ(x) denotes the cross-section of the nozzle, which is a given function independent of time.
The nozzle flow system (1.1), (3.2) can be rewritten in the quasi-conservative form (1.3)–(1.4)
with

K(U) =


σρu

K

0

 , R(U) =


0

R

0

 , K = σρu2 + σp−R, R :=

x∫
x̂

p(ξ, t)σξ(ξ) dξ. (3.4)

In order to construct the fifth-order WB A-WENO scheme, we first compute

Ej =
u2j
2

+
κγ

γ − 1
(ρj)

γ−1,

where uj := qj/ (σρ)j, ρj := (σρ)j/σj, and σj := σ(xj). Given qj and Ej, we perform the Ai-

WENO-Z interpolation to obtain the point values q±
j+ 1

2

and E±
j+ 1

2

, and then numerically solve the

nonlinear equations

E±
j+ 1

2

=

(
q±
j+ 1

2

)2
2
(
(σρ)±

j+ 1
2

)2 +
κγ

γ − 1

(
σ±
j+ 1

2

)1−γ[
(σρ)±

j+ 1
2

]γ−1
(3.5)

for (σρ)±
j+ 1

2

. Here, the values σ±
j+ 1

2

are obtained by a Ai-WENO-Z interpolation of σ. For solution

details, see [23].
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After obtaining the values (σρ)±
j+ 1

2

, we compute the corresponding values u±
j+ 1

2

= q±
j+1

2
/(σρ)±

j+1
2

and ρ±
j+ 1

2

= (σρ)±
j+1

2
/σ±

j+1
2

, which are then used to estimate the one-sided local speeds of propagation:

a+
j+ 1

2

= max
{
u+
j+ 1

2

+
√
κγ
(
ρ+
j+ 1

2

) γ−1
2 , u−

j+ 1
2

+
√
κγ
(
ρ−
j+ 1

2

) γ−1
2 , 0

}
,

a−
j+ 1

2

= min
{
u+
j+ 1

2

−√κγ
(
ρ+
j+ 1

2

) γ−1
2 , u−

j+ 1
2

−√κγ
(
ρ−
j+ 1

2

) γ−1
2 , 0

}
.

The global flux K in (3.4) needs to be evaluated by (2.3), which for the nozzle flow system reads
as

K(U±
j+ 1

2

) = F (U±
j+ 1

2

)−R(U±
j+ 1

2

) =


q±
j+ 1

2

q±
j+ 1

2

u±
j+ 1

2

+ σ±
j+ 1

2

p±
j+ 1

2

0

−


0

R±
j+ 1

2

0

 ,

where p±
j+ 1

2

= κ
(
ρ±
j+ 1

2

)γ
and R±

j+ 1
2

are computed as in §2. In particular, we have R−1
2

:= 0,

R+
1
2

= BΨ, 1
2
, and

R−
j+ 1

2

= R+
j− 1

2

+Bj, R+
j+ 1

2

= R−
j+ 1

2

+BΨ,j+ 1
2
, j = 1, . . . , N,

where

BΨ,j+ 1
2

= q+
j+ 1

2

u+
j+ 1

2

+ σ+
j+ 1

2

p+
j+ 1

2

− q−
j+ 1

2

u−
j+ 1

2

− σ−
j+ 1

2

p−
j+ 1

2

−
u+
j+ 1

2

+ u−
j+ 1

2

2

(
q+
j+ 1

2

− q−
j+ 1

2

)
−

(σρ)+
j+ 1

2

+ (σρ)−
j+ 1

2

2

(
E+
j+ 1

2

− E−
j+ 1

2

)
,

and

Bj = q−
j+ 1

2

u−
j+ 1

2

+ σ−
j+ 1

2

p−
j+ 1

2

− q+
j− 1

2

u+
j− 1

2

− σ+
j− 1

2

p+
j− 1

2

−
∫
Cj

(uqx + σρEx) dx,

where the integral in the last formula is evaluated using the fifth-order Newton-Cotes quadrature
[13, (4.4)].

Finally, Û±
j+ 1

2

:= ((σ̂ρ)±
j+ 1

2

, q̂±
j+ 1

2

)>, where q̂±
j+ 1

2

= q±
j+ 1

2

and (σ̂ρ)±
j+ 1

2

are obtained by numerically

solving the following nonlinear equations:

E±
j+ 1

2

=

(
q±
j+ 1

2

)2
2
(
(σ̂ρ)±

j+ 1
2

)2 +
κγ

γ − 1

(
σ̂j+ 1

2

)1−γ[
(σ̂ρ)±

j+ 1
2

]γ−1
(3.6)

with σ̂j+ 1
2

:= (σ+

j+1
2

+σ−
j+1

2

)/2; for solution details, see [23].
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3.2 Application to the Two-Layer Shallow Water Equations

In this section, we apply the flux globalization based WB A-WENO scheme to the two-layer
shallow water equations, which read as (1.1) with

U =



h1

q1

h2

q2

Z


, F (U) =



q1

h1u
2
1 +

g

2
h21

q2

h2u
2
2 +

g

2
h22

0


, B(U) =



0 0 0 0 0

0 0 −gh1 0 −gh1
0 0 0 0 0

−rgh2 0 0 0 −gh2
0 0 0 0 0


, (3.7)

and admit steady-state solutions satisfying (1.2) with

M(U) :=



1 0 0 0 0

u1 h1 0 0 0

0 0 1 0 0

0 0 u2 h2 0

0 0 0 0 1


, E(U) :=



q1

E1

q2

E2

0


, (3.8)

where

E1 :=
q21

2h21
+ g(h1 + h2 + Z) and E2 :=

q22
2h22

+ g(rh1 + h2 + Z).

Here, h1 and h2 are the water depths in the upper and lower layers, respectively, u1 and u2 are the
corresponding velocities, q1 := h1u1 and q2 := h2u2 represent the corresponding discharges, Z(x)
is a function describing the bottom topography, which can be discontinuous, g is the constant
acceleration due to gravity, and r := ρ1

ρ2
< 1 is the ratio of the constant densities ρ1 (upper layer)

and ρ2 (lower layer). The two-layer shallow water equations (1.1), (3.7) can be rewritten in the
quasi-conservative form (1.3)–(1.4) with

K(U) = (q1, K1, q2, K2, 0)>, R(U) = (0, R1, 0, R2, 0)>, (3.9)

where

K1 = h1u
2
1 +

g

2
h21 −R1, R1 := −

x∫
x̂

gh1(ξ, t)
[
h2(ξ, t) + Z(ξ)

]
ξ

dξ,

K2 = h2u
2
2 +

g

2
h22 −R2, R2 := −

x∫
x̂

gh2(ξ, t)
[
rh1(ξ, t) + Z(ξ)

]
ξ

dξ.

(3.10)

In order to construct the fifth-order WB A-WENO scheme, we first compute

(E1)j :=
(q1)

2
j

2(h1)2j
+ g

[
(h1)j + (h2)j + Zj

]
, (E2)j :=

(q2)
2
j

2(h2)2j
+ g

[
r(h1)j + (h2)j + Zj

]
,
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where Zj := Z(xj). Given (q1)j, (q2)j, (E1)j, and (E2)j, we perform the Ai-WENO-Z interpolation
to obtain the point values E±

j+ 1
2

= ((q1)
±
j+ 1

2

, (E1)
±
j+ 1

2

, (q2)
±
j+ 1

2

, (E2)
±
j+ 1

2

, 0)>, and then at every cell

interfaces x = xj+ 1
2
, we numerically solve the (nonlinear) systems of equations

(E1)
+
j+ 1

2

=

(
(q1)

+
j+ 1

2

)2
2
(
(h1)

+
j+ 1

2

)2 + g
[
(h1)

+
j+ 1

2

+ (h2)
+
j+ 1

2

+ Z+
j+ 1

2

]
,

(E2)
+
j+ 1

2

=

(
(q2)

+
j+ 1

2

)2
2
(
(h2)

+
j+ 1

2

)2 + g
[
r(h1)

+
j+ 1

2

+ (h2)
+
j+ 1

2

+ Z+
j+ 1

2

]
,

(3.11)

and 

(E1)
−
j+ 1

2

=

(
(q1)

−
j+ 1

2

)2
2
(
(h1)

−
j+ 1

2

)2 + g
[
(h1)

−
j+ 1

2

+ (h2)
−
j+ 1

2

+ Z−
j+ 1

2

]
,

(E2)
−
j+ 1

2

=

(
(q2)

−
j+ 1

2

)2
2
(
(h2)

−
j+ 1

2

)2 + g
[
r(h1)

−
j+ 1

2

+ (h2)
−
j+ 1

2

+ Z−
j+ 1

2

]
,

(3.12)

for
(
(h1)

+
j+ 1

2

, (h2)
+
j+ 1

2

)
and

(
(h1)

−
j+ 1

2

, (h2)
−
j+ 1

2

)
, respectively. Here, the values Z±

j+ 1
2

in (3.11) and

(3.12) are obtained using the Ai-WENO-Z interpolation of Z. For solution details, see [23].
After obtaining the values (h1)

±
j+ 1

2

and (h2)
±
j+ 1

2

, we compute the corresponding values (ui)
±
j+ 1

2
=

(qi)
±
j+1

2
/(hi)±

j+1
2

, i = 1, 2, and then evaluate the global numerical fluxes K(U±
j+ 1

2

) at the cell interfaces

x = xj+ 1
2

using (3.7)–(3.10):

K(U±
j+ 1

2

) = F (U±
j+ 1

2

)−R(U±
j+ 1

2

) =



(q1)
±
j+ 1

2

(h1)
±
j+ 1

2

(
(u1)

±
j+ 1

2

)2
+
g

2

(
(h1)

±
j+ 1

2

)2
(q2)

±
j+ 1

2

(h2)
±
j+ 1

2

(
(u2)

±
j+ 1

2

)2
+
g

2

(
(h2)

±
j+ 1

2

)2
0


−



0

(R1)
±
j+ 1

2

0

(R2)
±
j+ 1

2

0


,

where (Ri)
±
j+ 1

2

, i = 1, 2 are computed as in §2. In particular, we have (Ri)
−
1
2

:= 0, (Ri)
+
1
2

= (Bi)Ψ, 1
2
,

and
(Ri)

−
j+ 1

2

= (Ri)
+
j− 1

2

+ (Bi)j, (Ri)
+
j+ 1

2

= (Ri)
−
j+ 1

2

+ (Bi)Ψ,j+ 1
2
, j = 1, . . . , N,

where

(Bi)Ψ,j+ 1
2

= (qi)
+
j+ 1

2

(ui)
+
j+ 1

2

− (qi)
−
j+ 1

2

(ui)
−
j+ 1

2

+
g

2

[(
(hi)

+
j+ 1

2

)2 − ((hi)−j+ 1
2

)2]
−

(ui)
+
j+ 1

2

+ (ui)
−
j+ 1

2

2

[
(qi)

+
j+ 1

2

− (qi)
−
j+ 1

2

]
−

(hi)
+
j+ 1

2

+ (hi)
−
j+ 1

2

2

[
(Ei)

+
j+ 1

2

− (Ei)
−
j+ 1

2

]
,

and

(Bi)j = (qi)
−
j+ 1

2

(ui)
−
j+ 1

2

− (qi)
+
j− 1

2

(ui)
+
j− 1

2

+
g

2

[(
(hi)

−
j+ 1

2

)2 − ((hi)+j− 1
2

)2]− ∫
Cj

(ui(qi)x + hi(Ei)x) dx,
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i = 1, 2. As in §3.1, the integral in the last formula is evaluated using the fifth-order Newton-Cotes
quadrature [13, (4.4)]. The one-sided local speed a±

j+ 1
2

are estimated using the Lagrange theorem

precisely as it was done in [25, §2.3].

Finally, Û±
j+ 1

2

:= ((ĥ1)
±
j+ 1

2

, (q̂1)
±
j+ 1

2

, (ĥ2)
±
j+ 1

2

, (q̂2)
±
j+ 1

2

)>, where (q̂i)
±
j+ 1

2

= (qi)
±
j+ 1

2

, i = 1, 2, and

(ĥi)
±
j+ 1

2

, i = 1, 2, are obtained by numerically solving the following (nonlinear) systems:
(E1)

+
j+ 1

2

=
((q1)

+
j+ 1

2

)2

2((ĥ1)
+
j+ 1

2

)2
+ g

[
(ĥ1)

+
j+ 1

2

+ (ĥ2)
+
j+ 1

2

+ Ẑj+ 1
2

]
,

(E2)
+
j+ 1

2

=
((q2)

+
j+ 1

2

)2

2((ĥ2)
+
j+ 1

2

)2
+ g

[
r(ĥ1)

+
j+ 1

2

+ (ĥ2)
+
j+ 1

2

+ Ẑj+ 1
2

]
,

(3.13)

and 
(E1)

−
j+ 1

2

=
((q1)

−
j+ 1

2

)2

2((ĥ1)
−
j+ 1

2

)2
+ g

[
(ĥ1)

−
j+ 1

2

+ (ĥ2)
−
j+ 1

2

+ Ẑj+ 1
2

]
,

(E2)
−
j+ 1

2

=
((q2)

−
j+ 1

2

)2

2((ĥ2)
−
j+ 1

2

)2
+ g

[
r(ĥ1)

−
j+ 1

2

+ (ĥ2)
−
j+ 1

2

+ Ẑj+ 1
2

]
,

(3.14)

with Ẑj+ 1
2

:= (Z+

j+1
2

+Z−
j+1

2

)/2; for solution details, see [23].

4 Numerical Examples

In this section, we apply the developed fifth-order WB A-WENO schemes to several numerical
examples taken from [23] and compare their performance with that of the corresponding second-
order schemes. For the sake of brevity, the tested schemes will be referred to as the 5-Order
Scheme and 2-Order Scheme, respectively.

In all of the examples, we have solved the ODE systems (2.1) and (3.1) using the three-stage
third-order strong stability preserving (SSP) Runge-Kutta solver (see, e.g., [19, 20]) and use the
CFL number 0.5. The 2-Order Scheme has been implemented with the minmod parameter θ = 1.3.

4.1 Nozzle Flow System

We begin with two examples for the nozzle flow system (1.1), (3.2) with κ = 1 and γ = 1.4.
In both examples, we consider nontrivial steady states, which can be exactly preserved by both
2-Order and 5-Order Schemes at discrete level (this has been numerically verified), and test the
ability of the studied schemes to capture small perturbations of these steady states.

Example 1—Flows in Continuous Convergent and Divergent Nozzles

In the first example, we consider convergent and divergent nozzles described using the smooth
cross-sections

σ(x) = 0.976− 0.748 tanh(0.8x− 4) and σ(x) = 0.976 + 0.748 tanh(0.8x− 4),
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respectively.
We take the steady states with qeq ≡ 8, Eeq = 58.3367745090349 and qeq = 8, Eeq =

21.9230562619897 for the convergent and divergent nozzles, respectively, and compute the dis-
crete values of ρeq(x) in both the convergent and divergent cases by solving the corresponding
nonlinear equations. We then obtain ueq(x) = qeq(x)/(σ(x)ρeq(x)).

Equipped with these steady states, we proceed by adding a small perturbation to the density
field and consider the initial data

ρ(x, 0) = ρeq(x) +

{
10−2, x ∈ [2.9, 3.1],

0, otherwise,
q(x, 0) = σ(x)ρ(x, 0)ueq(x),

prescribed in the computational domain [0, 10] subject to free boundary conditions.
We compute the numerical solutions until the final time t = 0.5 by both the 2-Order and 5-

Order Schemes for both convergent and divergent nozzles on a uniform mesh with ∆x = 1/20 and
plot the differences ρ(x, t)− ρeq(x) at times t = 0.1, 0.3, and 0.5 in Figures 4.1 and 4.2. We also
plot the reference solutions computed by the 2-Order Scheme with ∆x = 1/400. As one can see,
the 5-Order Scheme clearly outperforms the 2-Order Scheme as it achieves much higher resolution
of the perturbations.

Figure 4.1: Example 1 (Convergent Nozzle): The difference ρ(x, t) − ρeq (top row) and zoom at
the perturbations (bottom row) at times t = 0.1 (left column), 0.3 (middle column), and 0.5 (right
column).

Example 2—Flows in a Discontinuous Convergent-Divergent Nozzle

In the second example, we consider a convergent-divergent nozzle with a discontinuous σ(x) given
by

σ(x) =

{
2, x ∈ [0, 7.5] ∪ [12.5, 20],

1, otherwise.
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Figure 4.2: Example 1: Same as in Figure 4.1, but for the divergent nozzle.

We take a steady state with qeq ≡ 8 and Eeq = 57.13486505 and compute the discrete values of
ρeq(x) by solving the corresponding nonlinear equations. We then obtain ueq(x) = qeq(x)/(σ(x)ρeq(x)).

Equipped with these steady states, we proceed by adding a small perturbation to the density
field and consider the initial data

ρ(x, 0) = ρeq(x) +

{
10−2, x ∈ [1, 2],

0, otherwise,
q(x, 0) = σ(x)ρ(x, 0)ueq(x),

prescribed in the computational domain [0, 20] subject to free boundary conditions.
We compute the solutions until the final time t = 1 by both the 2-Order and 5-Order Schemes

on a uniform mesh with ∆x = 1/10. In Figure 4.3, we plot the difference ρ(x, t) − ρeq(x) at
times t = 0.2, 0.6, and 1 together the reference solutions computed by the 2-Order Scheme with
∆x = 1/100. The obtained results clearly demonstrate that the 5-Order Scheme achieves higher
resolution than the 2-Order Scheme, especially at larger times.

4.2 Two-Layer Shallow Water Equations

In this section, we proceed with three numerical examples for the two-layer shallow water equations
(1.1), (3.7). We take r = 0.998 and either g = 10 (Examples 3 and 5) or g = 1 (Example 4).

Example 3—Small Perturbation of Discontinuous Steady State

In this example, we consider a discontinuous steady state given by

(h1)eq(x) : =

{
1.22373355048230, x < 0,

1.44970064153589, x > 0,
(q1)eq(x) ≡ 12,

(h2)eq(x) : =

{
0.968329515483846, x < 0,

1.12439026921484, x > 0,
(q2)eq(x) ≡ 10,
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Figure 4.3: Example 2: The difference ρ(x, t)− ρeq (top row) and zoom at the perturbations (bottom
row) at times t = 0.2 (left column), 0.6 (middle column), and 1 (right column).

and a discontinuous bottom topography

Z(x) =

{
−2, x < 0,

−1, x > 0,

and test the ability of the studied 2-Order and 5-Order Schemes to capture small perturbations
of this steady state, which is initially added to the upper layer depth:

h1(x, 0) = (h1)eq(x) +

{
0.001, x ∈ [−0.6,−0.5],

0, otherwise,

h2(x, 0) = (h2)eq(x), q1(x, 0) = (q1)eq(x), q2(x, 0) = (q2)eq(x).

These initial data are prescribed in the computational domain [−1, 1] subject to free boundary
conditions.

We compute the numerical solution until the final time t = 0.08 by both the 2-Order and
5-Order Schemes on a uniform mesh with ∆x = 1/100 and plot the difference h1(x, t)− (h1)eq(x)
at times t = 0.02, 0.05, and 0.08 in Figure 4.4. Here, the reference solution is computed by the
2-Order Scheme on a much finer mesh with ∆x = 1/5000. As one can see, the 5-Order Scheme
outperforms the 2-Order Scheme.

Example 4—Convergence to a Moving-Water Steady State

In the fourth example, we first demonstrate the ability of the proposed 5-Order Scheme to reach
discrete steady state. To this end, we take constant initial data

h1(x, 0) ≡ 8, h2(x, 0) ≡ 4, q1(x, 0) = q2(x, 0) ≡ 0,
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Figure 4.4: Example 3: The difference h1(x, t) − (h1)eq (top row) and zoom at the perturbations
(bottom row) at times t = 0.02 (left column), 0.05 (middle column), and 0.08 (right column).

and a discontinuous bottom topography

Z(x) =

{
0.2, x ∈ [8, 12],

0, otherwise,

both prescribed in the computational domain [0, 25] subject to the Dirichlet boundary conditions
imposed at x = 0,

h1(0, t) = 8, (h2)(0, t) = 4, (q1)(0, t) = 119, (q2)(0, t) = 60,

and free boundary conditions imposed at x = 25.
We first compute the numerical solutions on a uniform mesh with ∆x = 1/5 until a very large

time t = 100 to let the solution to converge to the discrete steady state. The obtained results
agree almost perfectly with those reported in [23, Figure 7.20] for the 2-Order Scheme.

We then add a small perturbation to the upper layer water depth and consider the following
initial data:

h1(x, 0) = (h1)eq(x) +

{
0.0001, x ∈ [2, 2.25],

0, otherwise,

h2(x, 0) = (h2)eq(x), q1(x, 0) = (q1)eq(x), q2(x, 0) = (q2)eq(x),

subject to free boundary conditions at both ends of the computational domain.
We compute the numerical solutions until the final time t = 1 by both the 2-Order and 5-Order

Schemes on a uniform mesh with ∆x = 1/5. The obtained differences h1− (h1)eq at times t = 0.2,
0.6, and 1 are plotted in Figure 4.5 together with the reference solution computed by the 2-Order
Scheme on a finer mesh with ∆x = 1/20. One can observe that the 5-Order Scheme produces
sharper results compared to those obtained by the 2-Order Scheme.
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Figure 4.5: Example 4: The difference h1(x, t) − (h1)eq (top row) and zoom at the perturbations
(bottom row) at times t = 0.2 (left column), 0.6 (middle column), and 1 (right column).

Example 5—Riemann Problems

In the final example, we numerically solve two Riemann problems with the following initial data:

Test1 : (h1, q1, h2, q2)(x, 0) =

{
(1, 1.5, 1, 1), x < 0,

(0.8, 1.2, 1.2, 1.8), otherwise,

Test2 : (h1, q1, h2, q2)(x, 0) =

{
(1.5, 1, 1, 1.5), x < 0,

(1.2, 1.6, 0.9, 1.2), otherwise,

with a discontinuous bottom topography,

Z(x) =

{
−2, x < 0,

−1.5, otherwise,

prescribed in the computational domain [−1, 1] subject to free boundary conditions.
The numerical solutions computed by the 2-Order and 5-Order Schemes until time t = 0.1 on

a uniform mesh with ∆x = 1/50 are plotted in Figures 4.6 and 4.7 together with the reference
solution computed by the 2-Order Scheme on a much finer mesh with ∆x = 1/5000. As one can
see, the results obtained by the 5-Order Scheme are sharper and less oscillatory compared to those
computed by the 2-Order Scheme.

5 Conclusions

In this paper, we have extended the second-order finite-volume flux globalization based well-
balanced (WB) path-conservative central-upwind (PCCU) schemes to fifth order of accuracy via
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Figure 4.6: Example 5 (Test 1): h1 and h2 (left column) and zoom at x ∈ [−0.2, 0.2] (right column).

Figure 4.7: Example 5 (Test 2): h1 and h2 (left column) and zoom at x ∈ [−0.03, 0.25] (right column).

the framework of the finite-difference alternative weighted essentially non-oscillatory (A-WENO)
schemes. The developed fifth-order flux globalization based WB A-WENO PCCU schemes have
been applied to two nonconservative systems—the nozzle flow system and two-layer shallow wa-
ter equations. We have tested the fifth-order schemes on a number of numerical examples and
demonstrated that they clearly outperform their second-order counterparts.
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