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Abstract
We develop a new second-order well-balanced central-upwind scheme for one-
dimensional blood flow models. The proposed scheme is based on a flux globaliza-
tion approach, which helps to develop a high-resolution and robust method capable 
of preserving both “man-at-eternal-rest” (zero-velocity) and “living-man” (non-zero 
velocity) steady-state solutions. We demonstrate the performance of the designed 
schemes on several numerical examples.

Keywords  Flux globalization · Central-upwind scheme · Well-balanced method · 
Blood flow equations · Steady-state solutions
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1  Introduction

The goal of this paper is to develop a high-resolution and robust well-balanced 
(WB) numerical method for one-dimensional (1-D) blood flow models in arteries. 
Such models have been extensively used to study wave propagation phenomena in 
arteries of the human cardiovascular system; see, e.g., [9, 22].
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A well-established nonconservative formulation for the 1-D blood flow in 
human arteries takes the following form (see, e.g., the review paper [24] and ref-
erences therein):

where A(x, t) = �r2(x, t) is the cross-sectional area of the vessel or tube at spatial 
position x and time t with r(x, t) > 0 being the radius; Q(x, t) = A(x, t)u(x, t) is the 
discharge with u(x, t) representing the average velocity of the flow; the Coriolis coef-
ficient 𝛼̂ is the momentum-flux correction that, in general, depends on the assumed 
velocity profile, but in this paper taken 𝛼̂ ≡ 1 , which corresponds to a flat velocity 
profile; 𝜌 > 0 is the constant blood density; and p(x, t) > 0 is the average internal 
pressure. Finally, f(x, t) is the friction force per unit length modeled by

where the viscous resistance 𝛼(x) > 0 is a prescribed function.
In order to close the system (1.1)–(1.2), one needs to complete it with a pres-

sure law linking the average pressure p(x, t) with the cross-sectional area A(x, t). 
In the present work, we use a simple elastic tube law that describes the elastic 
behavior of the arterial wall:

where the external pressure pext is assumed to be constant, the constant � stands for 
the arterial stiffness, and B(x) = �r2

0
(x) is the cross-section at rest with r0(x) being 

the corresponding radius. Applying the elastic law (1.3) to the 1-D blood flow sys-
tem (1.1)–(1.2), we arrive at the following 1-D blood flow system in the form of 
hyperbolic balance laws:

where � = �∕�
√
�.

The blood flow system (1.4)–(1.5) is similar to the 1-D shallow water equa-
tions, which has been widely used to model water flows in rivers, lakes, coastal 
areas as well as in a variety of oceanographic and atmospheric flows. As in the 
case of shallow water models, the main challenge in the development of robust 
and accurate numerical methods for the system (1.4)–(1.5) is to respect a delicate 
balance between the flux and the source terms in Eq. (1.5). Such methods are 
called WB. They are capable of exactly preserving discrete steady-state solutions 

(1.1)

⎧
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�
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(equilibria) and accurately capturing nearly equilibrium flows even when a rela-
tively coarse mesh is used.

It is easy to check that the system (1.4)–(1.5) admits a family of smooth steady 
states satisfying

There are several particular cases, which we will consider in the numerical examples 
in Sect. 3. In the frictionless case of �(x) ≡ 0 , (1.6) reduces to

If B is assumed to be constant, then 
�√

B(x)
�
x
≡ 0 and (1.6) can be simplified to

In the case of Q ≢ 0 , the equilibria (1.6)–(1.8) correspond to the so-called “living-
man” steady states, while in the motionless case, (1.6)–(1.8) reduce to the so-called 
“man-at-eternal-rest” or “dead-man” steady-states given by

Several WB numerical methods for the 1-D blood flow models have been recently 
proposed. In [8], first- and second-order finite-volume schemes capable of exactly 
preserving “dead-man” equilibria have been developed. In [20], a high-order 
weighted essentially non-oscillatory (WENO) scheme has been constructed for the 
1-D blood flow in elastic vessels with varying mechanical and geometrical proper-
ties. In [2], a fully WB discontinuous Galerkin methods capable of exactly preserv-
ing both the “dead-man” and “living-man” equilibria have been derived by repre-
senting a solution in terms of the sum of the equilibrium and fluctuation following 
by rewriting the frictionless version of the system (1.4)–(1.5) in terms of the fluctua-
tions (obviously, this method is based on the assumption that the background equlib-
rium state is a-priori known). In [10], a positivity preserving and fully WB scheme 
has been designed for the 1-D blood flow equations with friction, but with a constant 
cross-section at rest B. In [7], second-order WB Lagrange-projection schemes capa-
ble of exactly preserving “dead-man” equilibria have been developed for the fric-
tionless 1-D blood flow system.

In this paper, we introduce a robust, highly accurate, semi-discrete, second-order 
central-upwind (CU) scheme for the 1-D blood flow model (1.4)–(1.5). CU schemes, 
originally developed in the context of general multidimensional hyperbolic systems of 
conservation laws in [14, 16, 18], belong to a class of Godunov-type Riemann-prob-
lem-solver-free finite-volume schemes and thus can be applied as a “black-box solver” 
to a wide variety of problems including several shallow water models; see, e.g., [13] 
and references therein. When CU schemes are applied to hyperbolic systems of balance 
laws, a robust way of preserving general steady-state solutions via flux globalization 

(1.6)Q(x) ≡ Q̂ = �����,

�
Q̂2

2A2(x)
+ �

�√
A(x) −

√
B(x)

��

x

= −�
Q̂

A2(x)
.

(1.7)Q(x) ≡ Q̂,
Q̂2

2A2(x)
+ �

�√
A(x) −

√
B(x)

� ≡ �����.

(1.8)Q(x) ≡ Q̂, −Q̂2 ln(A(x)) +
�

5
A

5

2 (x) = −�Q̂x + �����.

(1.9)Q(x) ≡ 0, A(x) ≡ B(x).
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was proposed in [5]: The source terms are first incorporated into the fluxes and then 
the CU scheme is applied to the resulting conservative system with global fluxes. This 
approach has been successfully applied to the Saint-Venant system of shallow water 
equations [3, 6], thermal rotating shallow water equations [15], and the compressible 
Euler equations with gravitation [4]. Here, we extend the flux globalization approach to 
the 1-D blood flow model and use it to develop the fully WB CU scheme for the system 
(1.4)–(1.5). In order to preserve the nonnegativity of the cross-sectional area A, we use 
the “draining time-step” technique originally introduced in [1] in the context of shallow 
water equations.

The rest of the paper is organized as follows. In Sect. 2, we introduce the flux glo-
balization based WB CU scheme. First, in Sect. 2.1, we reformulate the studied blood 
flow system in an equivalent quasi-conservative form with a global flux. Then, in 
Sect. 2.2, we develop a WB CU scheme for the reformulated blood flow system. In 
Sect. 3, we present several numerical examples to demonstrate the performance of the 
proposed scheme.

2 � Flux globalization based well‑balanced scheme

In this section, we introduce the flux globalization based reformulation of the system 
(1.4)–(1.5) and then use it to develop the WB CU scheme.

2.1 � Flux globalization

We first incorporate the source terms present on the right-hand side (RHS) of (1.5) into 
the fluxes and rewrite the system (1.4)–(1.5) in the following quasi-conservative form:

Here,

is the global flux with the global variables:

where x̂ is an arbitrary number.
Smooth steady states of the system (2.1)–(2.3) can be written by

Notice that (2.4) is equivalent to (1.6).

(2.1)
At + Qx = 0,

Qt + Kx = 0.

(2.2)K ∶=
Q2

A
+

�

3
A

3

2 + R + S

(2.3)R(x, t) ∶= −�

x

∫̂
x

A(�, t)
�√

B(�, t)
�
x
d�, S(x, t) ∶=

x

∫̂
x

�(�)
Q(�, t)

A(�, t)
d�,

(2.4)Q(x) ≡ Q̂ = �����, K(x) ≡ K̂ = �����.
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2.2 � Well‑balanced central‑upwind scheme

We now develop a semi-discrete second-order WB CU scheme for the quasi-con-
servative system (2.1)–(2.3), which can be written in the vector form as

where U =
(
A,Q)⊤ and F(U) =

(
Q,K)⊤ . In order to design the WB CU scheme for 

(2.5), we follow the lines of [3, 5, 6] and combine the Riemann-problem-solver-free 
CU evolution with the reconstruction of the equilibrium (flux) variables Q and K 
(rather than the conservative variables A and Q), which are constant at steady states.

To this end, we first introduce a uniform (for simplicity of presentation) finite-
volume cells Cj ∶= [x

j−
1

2

, x
j+

1

2

] of size Δx centered at xj = (x
j+

1

2

+ x
j+

1

2

)∕2 and 

denote by Uj(t) the cell average of U(⋅, t) over Cj:

We suppose that at certain time t ≥ 0 , the cell averages Uj are available and from 
now on, we omit the time-dependence of all of the indexed quantities for the sake of 
brevity.

We then apply the semi-discrete CU scheme introduced in [14], according to 
which the cell averages of the solution are evolved in time by solving the follow-
ing system of ODEs:

where the CU numerical flux is given by

Here, F±

j+
1

2

 and U±

j+
1

2

 are reconstructed right/left-sided values of Q, K and A at the cell 

interface x = x
j+

1

2

 , obtained using a special WB reconstruction procedure described 
in Sect.  2.2.1. The term �U

j+
1

2

 represents a built-in “anti-diffusion” given by (see 
[14])

where

(2.5)Ut + F(U)x = 0,

Uj(t) ∶≈
1

Δx ∫
Cj

U(x, t) dx, j = j
�
,… , jr.

(2.6)d

dt
Uj = −

H
j+

1

2

−H
j−

1

2

Δx
,

(2.7)H
j+

1

2

=

a+
j+

1

2

F
−

j+
1

2

− a−
j+

1

2

F
+

j+
1

2

a+
j+

1

2

− a−
j+

1

2

+

a+
j+

1

2

a−
j+

1

2

a+
j+

1

2

− a−
j+

1

2

(
U

+

j+
1

2

− U
−

j+
1

2

− �U
j+

1

2

)
.

(2.8)�U
j+

1

2

= minmod

(
U

+

j+
1

2

− U
∗

j+
1

2

, U∗

j+
1

2

− U
−

j+
1

2

)
,
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and the minmod function is defined by

Finally, a±
j+

1

2

 are the one-sided local speeds of propagation, which can be estimated 

using the largest and the smallest eigenvalues of the Jacobian of the system 
(1.4)–(1.5) as follows:

2.2.1 � Well‑balanced reconstruction

In order to complete the derivation of the WB CU scheme, we follow the lines of 
[6] to reconstruct the point values Q±

j+
1

2

 and K±

j+
1

2

 , and then obtain the point values 

A±

j+
1

2

.

We first follow the idea introduced in [17] in the context of WB CU scheme for 
the Saint-Venant system and replace the cross-section at rest function B(x) with its 
continuous piecewise linear approximation:

where

which reduces to B
j+

1

2

∶= B(x
j+

1

2

) if B is continuous at x = x
j+

1

2

 . We then introduce 
the following notations:

U
∗

j+
1

2

=

a+
j+

1

2

U
+

j+
1

2

− a−
j+

1

2

U
−

j+
1

2

−

{
F
(
U

+

j+
1

2

)
− F

(
U

−

j+
1

2

)}

a+
j+

1

2

− a−
j+

1

2

,

minmod(z1, z2,…) ∶=

⎧
⎪⎨⎪⎩

minj{zj} if zj > 0 ∀j,

maxj{zj} if zj < 0 ∀j,

0 otherwise .

(2.9)

a+
j+

1

2

= max

⎧
⎪⎨⎪⎩

Q+

j+
1

2

A+

j+
1

2

+

�
�

2

�
A+

j+
1

2

� 1

4 ,

Q−

j+
1

2

A−

j+
1

2

+

�
�

2

�
A−

j+
1

2

� 1

4 , 0

⎫
⎪⎬⎪⎭
,

a−
j+

1

2

= min

⎧
⎪⎨⎪⎩

Q+

j+
1

2

A+

j+
1

2

−

�
�

2

�
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1

2

� 1

4 ,

Q−
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2

A−
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2
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�
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2

�
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2

� 1
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.
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B
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Δx

(
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, x ∈ Cj,
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In order to evaluate the global variables R and S, we begin with computing their 
point values by discretizing the integrals in (2.3). First, we set x̂ = x

j
�
−

1

2

 so that

and then use midpoint-type quadratures to obtain following recursive formulae for 
the values of R and S at the cell interfaces x = x

j+
1

2

:

Next, we approximate the values of R and S at the cell centers x = xj . To this end, we 
first write the recursive formulae

and then derive a special quadrature for the first integral in (2.11). This quadrature 
will be WB in the sense that in the case the data correspond to the “dead-man” equi-
librium (1.9), all of the values Kj should be the same (in particular, Kj = Kj+1 ). Thus, 
using the definition of K in (2.2), (2.3), we would require that at the steady state 
(1.9)

The WB quadrature is then

Indeed, when at the steady state Aj = Bj and Aj+1 = Bj+1 , the RHS of (2.13) reduces 
to

and then substituting Aj = Bj , Aj+1 = Bj+1 , (2.13) and (2.14) into (2.12) results in an 
identity.

Bj ∶= B̃(xj) =
B
j+

1

2

+ B
j−

1

2

2
, (Bx)j ∶= B̃x(xj) =

B
j+

1

2

− B
j−

1

2

Δx
.

(2.10)R
j
�
−

1

2

∶= 0, S
j
�
−

1

2

∶= 0,

R
j+

1

2

= R
j−

1

2

− � Aj

(√
B
j+

1

2

−
√

B
j−

1

2

)
,

S
j+

1

2

= S
j−

1

2

+ Δx �(xj)
Qj

Aj

,

j = j
�
,… , jr.

(2.11)Rj+1 = Rj − �

xj+1

∫
xj

A(
√
B)x dx, Sj+1 = Sj +

xj+1

∫
xj

�
Q

A
dx,

(2.12)
�

3
(Aj+1)

3

2 − �

xj+1

∫
xj

A(
√
B)x dx =

�

3
(Aj)

3

2 .

(2.13)

xj+1

∫
xj

A(
√
B)x dx ≈

1

3

�
Aj + Aj+1 +

�
Aj Aj+1

���
Bj+1 −

�
Bj

�
.

(2.14)
1

3

(
Bj + Bj+1 +

√
BjBj+1

)(√
Bj+1 −

√
Bj

)
=

1

3

[
(Bj+1)

3

2 − (Bj)
3

2

]
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The second integral in (2.11) is discretized using the trapezoidal rule and the 
resulting recursive formulae for the values of R and S at the cell centers are

The first two terms in (2.15) and (2.16), namely, Rj
�
 and Sj

�
 , are computed using the 

similar quadratures and by taking into account (2.10):

where Q+

j
�
−

1

2

 is a reconstructed point value of Q, obtained using a piecewise linear 

reconstruction described below (see (2.20)–(2.21)), and A
j
�
−

1

2

 is computed by 
numerically solving the following nonlinear equation:

which corresponds to the boundary condition K
j
�
−

1

2

= Kj
�
 , which should be used if 

the solution is at steady state at the boundary.

Remark 2.1  Depending on a problem at hand, an alternative boundary condition for 
A
j
�
−

1

2

 can be used.

Equipped with the point values Rj and Sj , we use (2.2) to obtain

introduce the equilibrium (flux) variables Fj ∶=
(
Qj,Kj

)⊤ , and then perform a 
piecewise linear reconstruction

(2.15)

Rj+1 = Rj −
�

3

(
Aj + Aj+1 +

√
Aj Aj+1

)(√
Bj+1 −

√
Bj

)
, j = j

�
,… , jr − 1,

(2.16)Sj+1 = Sj +
Δx

2

(
�(xj)

Qj

Aj

+ �(xj+1)
Qj+1

Aj+1

)
, j = j

�
,… , jr − 1.

(2.17)Rj
�
= −

�

3

(
A
j
�
−

1

2

+ Aj
�
+

√
A
j
�
−

1

2

Aj
�

)(√
Bj

�
−
√

B
j
�
−

1

2

)
,

(2.18)Sj
�
=

Δx

4

(
�(xj

�
)
Qj

�

Aj
�

+ �(x
j
�
−

1

2

)

Q+

j
�
−

1

2

A
j
�
−

1

2

)
,

(
Q+

j
�
−

1

2

)2

A
j
�
−

1

2

+
�

3

(
A
j
�
−

1

2

) 3

2 =

(
Qj

�

)2

Aj
�

+
�

3

(
Aj

�

) 3

2 + Rj
�
+ Sj

�
,

Kj =

(
Qj

)2

Aj

+
�

3

(
Aj

) 3

2 + Rj + Sj,

(2.19)F̃(x) = Fj + (Fx)j(x − xj), x ∈ Cj,
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which is used to evaluate the right/left-sided values F±

j+
1

2

 at the cell interface x = x
j+

1

2

:

In order to ensure a non-oscillatory nature of the piecewise linear reconstruction 
(2.19) and the resulting scheme, one needs to compute the slopes (Fx)j with the help 
of a nonlinear limiter. In all of the numerical experiments reported in Sect. 3, we 
have used a generalized minmod limiter [19, 21, 23]:

applied in the component-wise manner. The parameter � in (2.21) can be used to 
control the oscillations in the computed solution as larger � ’s correspond to less dis-
sipative but, in general, more oscillatory reconstructions.

Finally, after F±

j+
1

2

=
(
Q±

j+
1

2

,K±

j+
1

2

)⊤ have been computed, we obtain A±

j+
1

2

 by numer-

ically solving the following nonlinear equations:

In the numerical experiments reported in Sect. 3, these equations are solved using 
Newton’s method; see Appendix A for details.

Remark 2.2  We emphasize that if the discrete data correspond to the steady state, 
that is, if Qj ≡ Q̂, Kj ≡ K̂, ∀j , then Q+

j+
1

2

= Q−

j+
1

2

≡ Q̂, K+

j+
1

2

= K−

j+
1

2

≡ K̂, ∀j , which 

implies that the equations for i = + and i = − in (2.22) are identical, which ensures 
that A+

j+
1

2

= A−

j+
1

2

, ∀j and therefore the numerical fluxes (2.7) would be 

H
j+

1

2

≡ (�Q, �K)⊤, ∀j and hence the RHS of (2.6) would vanish. This proves that the 
developed flux globalization based CU scheme is WB in the sense that it is capable 
of exactly preserving discrete steady states

Remark 2.3  The nonnegativity of the computed cell averages Aj is enforced using 
the “draining time-step” technique originally introduced in [1] in the context of shal-
low water equations.

(2.20)F
−

j+
1

2

= Fj +
Δx

2
(Fx)j, F

+

j+
1

2

= Fj+1 −
Δx

2
(Fx)j+1.

(2.21)

(Fx)j = minmod

(
�
Fj − Fj−1

Δx
,
Fj+1 − Fj−1

2Δx
, �

Fj+1 − Fj

Δx

)
, � ∈ [1, 2],

(2.22)K i

j+
1

2

=

(
Qi

j+
1

2

)2

Ai

j+
1

2

+
�

3

(
Ai

j+
1

2

) 3

2 + R
j+

1

2

+ S
j+

1

2

, i ∈ {+,−}.

(2.23)Qj ≡ Q̂, Kj ≡ K̂, ∀j.
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3 � Numerical examples

In this section, we first test the proposed flux globalization based WB CU scheme on 
several benchmarks from [10] and [2], where the systems

and

respectively, have been studied. We note that Model I is the system (1.4)–(1.5) with 
the constant cross-section at rest, that is, with B(x) ≡ ����� , while Model II is a 
frictionless (with � = 0 ) version of the system (1.4)–(1.5).

We then test the performance of the flux globalization based WB CU on an exam-
ple for the general system (1.4)–(1.5). The obtained results are compared with those 
computed by the non-well-balanced (NWB) CU scheme described in Appendix B. For 
the sake of brevity, the two studied schemes will be referred to as the WB and NWB 
schemes in all of the examples below. In all of the numerical examples, we use the WB 
scheme on a very fine mesh with 20,000 uniform cells to compute reference solutions. 
For the sake of brevity, the solutions computed by the WB and NWB schemes on a 
coarse mesh with 200 uniform cells will be referred to as the WB solution and NWB 
solution, respectively.

In all of the examples, the time evolution is carried out using the three-stage third-
order strong stability preserving (SSP) Runge–Kutta method (see, e.g., [11, 12]) with 
the CFL number 0.5. The minmod parameter has been set to � = 1.3.

3.1 � Numerical tests for model I

In this section, we apply the studied WB and NWB CU schemes to Model I with 
� = 176

√
� × 105∕9891 and test them on three numerical examples taken from [10, §

6.3].
For Model I, the “living-man” steady state (1.8) can be written as

where Aref is a reference value of A(x) at a certain reference point x = xref (in Exam-
ple 1–3, xref = 0 and Aref = 3.14 × 10−4).

����� � ∶

⎧
⎪⎨⎪⎩

At + Qx = 0,

Qt +
�
Q2

A
+

�

3
A

3

2

�
x
= −�

Q

A
,

����� �� ∶

⎧
⎪⎨⎪⎩

At + Qx = 0,

Qt +
�
Q2

A
+

�

3
A

3

2

�
x
= �A

�√
B
�
x
,

(3.1)
Q(x) ≡ Q̂, −Q̂ 2 ln(A(x)) +

�

5
A

5

2 (x) = −�Q̂(x − xref )

− Q̂ 2 ln(Aref ) +
�

5
A

5

2

ref
,
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In order to express the discrete version of the steady state (3.1) in terms of the global 
flux K, that is, using (2.4), we substitute x = x

j
�
−

1

2

 into (3.1) and solve the resulting non-
linear equation

for A
j
�
−

1

2

 . We then use (2.2) and (2.10) to obtain

and then we have Kj ≡ K̂, ∀j . Finally, the values Aj are recursively obtained from 
(2.23) as follows. First, we use (2.2) with R = 0 , (2.23) and (2.18) to construct the 
nonlinear equation for Aj

�
:

and after solving (3.3), we proceed with solving the following sequence of nonlinear 
equations:

where the global variable Sj is obtained using Eq. (2.16). Finally, Eq. (3.4) are to be 
solved recursively for Aj+1 . Both (3.3) and (3.4) are numerically solver using New-
ton’s method with Aref being used as an initial guess.

In Examples 1–3 studied in this section, we prescribe the Dirichlet boundary condi-
tions, namely, the values of F at the left and right endpoints of the computational 
domain. We first set the point values F−

j
�
−

1

2

 and F+

jr+
1

2

 to equal to the corresponding pre-

scribed boundary values, and after that we use these values to compute the slopes (F)x 
in the cells Cj

�
 and Cjr

 , where one cannot use formula (2.21), as follows:

We then use these slopes to compute the point values in cells Cj
�
 and Cjr

:

−Q̂ 2 ln
(
A
j
�
−

1

2

)
+

�

5
A

5

2

j
�
−

1

2

= −�Q̂(x
j
�
−

1

2

− xref ) − Q̂ 2 ln(Aref ) +
�

5
A

5

2

ref
.

(3.2)K
j
�
−

1

2

=
Q̂ 2

A
j
�
−

1

2

+
�

3
A

3

2

j
�
−

1

2

= K̂,

(3.3)
Q̂ 2

Aj
�

+
�

3
A

3

2

j
�

+
Q̂Δx

4

[
�(xj

�
)

Aj
�

+
�(x

j
�
−

1

2

)

A
j
�
−

1

2

]
= K̂,

(3.4)
Q̂ 2

Aj+1

+
�

3
A

3

2

j+1
+ Sj +

Q̂Δx

2

[
�(xj+1)

Aj+1

+
�(xj)

Aj

]
= K̂, j = j

�
,… , jr − 1,

(3.5)(Fx)j
�
= minmod

(Fj
�
− F

−

j
�
−

1

2

Δx∕2
,
Fj

�
+1 − Fj

�

Δx

)
,

(3.6)(Fx)jr = minmod

(
Fjr

− Fjr−1

Δx
,

F
+

jr+
1

2

− Fjr

Δx∕2

)
.

(3.7)F
+

j
�
−

1

2

= Fj
�
−

Δx

2
(Fx)j

�
, F

−

j
�
+

1

2

= Fj
�
+

Δx

2
(Fx)j

�
,
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Finally, the boundary point values A−

j
�
−

1

2

 and A+

jr+
1

2

 are calculated by solving the non-

linear equation (2.22).

3.1.1 � Example 1—WB assessment with constant ̨

In the first example, we demonstrate that the proposed flux globalization based WB 
CU scheme is capable of exactly preserving “living-man” steady state taken from 
[10] and accurately handling their small perturbations.

We take a constant viscous resistance �(x) ≡ 11�∕210,000 (m2∕s2) and begin 
with the initial data corresponding to the discrete equilibrium: 
Q

E

j
≡ Q̂ = −10−3 m3∕s and KE

j
≡ K̂ with the value K̂ as well as the cell averages of 

A, namely, A
E

j
 obtained using (3.1)–(3.4). We compute the numerical solutions until 

the final time t = 5 s using both the WB and NWB schemes with 200 uniform cells 
on the computational domain [−�∕2,�∕2] with the Dirichlet boundary conditions.

We first compute the L1 - and L2-errors denoted by e1(t) and e2(t) and defined as 
follows:

at times t = 0.1 , 1, 2, and 5 s. The obtained results are presented in Table 1, where 
one can clearly see that unlike the NWB scheme, the proposed flux globalization 
based WB CU scheme preserves the steady state within the machine accuracy. In 
addition, in Fig. 1, we present the differences between the steady state and the solu-
tions computed by the WB and NWB schemes (for the latter one we also show the 
solution computed on a substantially refined mesh with 20,000 uniform cells). As 
one can see, the error in the NWB scheme roughly reduces by a factor of 104 , which 
confirms that the NWB scheme is indeed second-order accurate, but the error is still 
larger than the machine accuracy despite using so fine mesh.

We then slightly perturb the studied steady state by replacing the cell aver-
ages Aj(0) = A

E

j
 for xj ∈ [−�∕20,�∕20] with Aj(0) = A

E

j

(
1 − � cos(10xj)

)2with 

(3.8)F
+

jr−
1

2

= Fjr
−

Δx

2
(Fx)jr , F

−

jr+
1

2

= Fjr
+

Δx

2
(Fx)jr .

e1(t) ∶= Δx

jr∑
j=j

�

|Aj(t) − A
E

j
| + Δx

jr∑
j=j

�

|Qj(t) − Q
E

j
|,

e2(t) ∶=

[
Δx

jr∑
j=j

�

(
Aj(t) − A

E

j

)2

+ Δx

jr∑
j=j

�

(
Qj(t) − Q

E

j

)2
] 1

2

,

Table 1   Example 1: L1 - and L2-errors for the WB and NWB schemes

e
1
(0.1) e

1
(1) e

1
(2) e

1
(5) e

2
(0.1) e

2
(1) e

2
(2) e

2
(5)

WB 8.05e−19 8.05e−19 8.05e−19 8.05e−19 9.98e−19 9.98e−19 9.98e−19 9.98e−19
NWB 2.94e−9 5.40e−9 3.84e−9 3.78e−9 3.09e−9 3.87e−9 3.29e−9 3.26e−9
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� = 5 × 10−5 . We compute the numerical solutions by both the WB and NWB 
schemes until the final time t = 0.15 and present the obtained differences between 
the perturbed solutions and the steady state in Fig.  2. One can see that while the 
WB scheme captures the small perturbation in a non-oscillatory manner, the NWB 
scheme develops relatively large oscillations near the left end of the computational 
domain. Even though these oscillations decay when the mesh is refined, the obtained 
results clearly demonstrate the superiority of the WB scheme over the NWB one.

3.1.2 � Example 2—WB assessment with nonconstant ̨

In the second example taken from [10], we choose the nonconstant viscous 
resistance

�(x) =
11�

210,000

[
1 + 0.1 sin

(
4�

3
x

)]
.

Fig. 1   Example 1: Differences between the steady states and solutions computed by the WB scheme on 
200 uniform cells (top row) and the NWB scheme on 200 (middle row) and 20,000 (bottom row) uniform 
cells at four different times



	 S. Chu, A. Kurganov 

1 3

    2   Page 14 of 35

As in Example 1, we consider the steady state solution with Q
E

j
≡ Q̂ = −10−3 m3∕s 

and K E
j
≡ K̂ with the value K̂ as well as the cell averages A

E

j
 obtained using 

(3.1)–(3.4). The initial data given by

contain a perturbation of A, which is small as we take � = 5 × 10−6.
We compute the numerical solutions by both the WB and NWB schemes until 

the final time t = 0.07 s in the computational domain [0,  1.5]. The differences 
between the perturbed solutions and the steady state are presented in Fig. 3. As 
one can see, the WB scheme captures the small perturbation in a non-oscillatory 
way, while the NWB scheme develops some small oscillations near x = 1 and is 
also not very accurate at the left edge of the computational domain.

Aj(0) =

⎧⎪⎨⎪⎩

A
E

j

�
1 − � cos

�
20�

3
xj

��2
if x ∈

�
27

40
,
33

40

�
,

A
E

j
otherwise ,

Qj(0) ≡ Q̂,

Fig. 2   Example 1: Differences between the reference (top row), WB (middle row), and NWB (bottom 
row) solutions and the steady state at three different times
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3.1.3 � Example 3—WB assessment with unknown ̨

In the third example taken from [10], we consider the case where the viscous resist-
ance �(x) is initially unknown and computed as follows. For the data A = AE(x) , 
Q = QE(x) ≡ Q̂ being at a steady state, the viscous resistance �(x) is obtained from 
the second equation of Model I and it is

In this example, we take the following continuous steady state:
(3.9)

�(x) = −
AE(x)

Q̂

(
Q̂ 2

AE(x)
+

�

3

(
AE(x)

) 3

2

)

x

=

(
Q̂

AE(x)
−

�
(
AE(x)

) 3

2

2Q̂

)
AE
x
(x).

AE(x) = A

[
1 + 0.1 sin

(
4�

3
x

)]
, QE(x) ≡ Q̂ = −10−3 m3∕s,

Fig. 3   Example 2: Differences between the reference (top row), WB (middle row), and NWB (bottom 
row) solutions and the steady state at three different times
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where A = 3.14 × 10−4 m2 . We then compute the viscous resistance �(x) from (3.9), 
and the discrete steady state values A

E

j
 and KE

j
≡ K̂ are obtained using (3.1)–(3.4). 

We take the initial data

which contain a small perturbation of AE as � = 5 × 10−5.
We compute the numerical solution by both the WB and NWB schemes until 

the final time t = 0.07 s in the computational domain [0,  1.5]. The differences 
between the perturbed solutions and the steady state are presented in Fig. 4. As 
one can see, the WB scheme still captures the perturbation very accurately, while 
the NWB scheme produces spurious oscillations throughout the entire computa-
tional domain.

Aj(0) =

⎧
⎪⎨⎪⎩

A
E

j

�
1 − � cos

�
20�

3
xj

��2
if x ∈

�
27

40
,
33

40

�
,

A
E

j
otherwise ,

Qj(0) ≡ −10−3,

Fig. 4   Example 3: Differences between the reference (top row), WB (middle row), and NWB (bottom 
row) solutions and the steady state at three different times
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3.2 � Numerical tests for Model II

In this section, we apply the studied WB and NWB CU scheme to Model II with 
� = 5 × 106∕53

√
� and present three numerical experiments.

Recall that the steady states for Model II are given by

where Q̂ and Ê are constants; see (1.7). In order to express the discrete version of 
(3.10) in terms of the global flux K, we first compute A

j
�
−

1

2

 by solving the following 
nonlinear equation:

Equipped with A
j
�
−

1

2

 , we compute the constant K̂ using (3.2) and then the cell-aver-
ages Aj can be computed recursively as follows. First, we construct the nonlinear 
equation for Aj

�
 using (2.2) with S = 0 , (2.23) and (2.17):

After obtaining Aj
�
 from (3.12), the values of Aj can be computed by solving the fol-

lowing sequence of nonlinear equations:

for Aj+1 . In (3.13), Rj is obtained using Eq. (2.15).
In this section, the computational domain is [0, L] and the values of Q̂ and Ê are 

defined as in [2, §5.2]:

where the subscripts “in” and “out” represent the values at the inlet (left endpoint) 
and the outlet (right endpoint) of the domain. The values of Qin and Aout in (3.14) are 
defined by

(3.10)Q(x) ≡ Q̂,
Q̂ 2

2A2(x)
+ �

�√
A(x) −

√
B(x)

� ≡ Ê,

(3.11)
Q̂ 2

2A2

j
�
−

1

2

+ �
(√

A
j
�
−

1

2

−
√

B
j
�
−

1

2

)
= Ê.

(3.12)

Q̂ 2

Aj
�

+
�

3
(Aj

�
)
3

2 −
�

3

(
A
j
�
−

1

2

+ Aj
�
+

√
A
j
�
−

1

2

Aj
�

)(√
Bj

�
−
√

B
j
�
−

1

2

)
= K̂.

(3.13)

Q̂ 2

Aj+1

+
�

3
A

3

2

j+1
+ Rj −

�

3

(
Aj + Aj+1 +

√
Aj Aj+1

)(√
Bj+1 −

√
Bj

)

= K̂, j = j
�
,… , jr − 1,

(3.14)Q̂ = Qin, Ê =
Q2

in

2A2
out

+ �
�√

Aout −
√
B(L)

�
,

(3.15)Qin = AinSinCin, Aout = B(L)(1 + Sin)
2, Ain = B(0)(1 + Sin)

2,
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where Sin is the Shapiro number and Cin =

�
�
√
Ain∕2 is the Moens–Korteweg 

velocity at the inlet. The nonlinear equations in (3.11) and (3.13) are solved using 
Newton’s method with Ain being used as an initial guess.

3.2.1 � Example 4—Perturbation of a “Dead Man” WB problem

In this example taken from [2, §3.3.3], we consider the case of “a dead man” with 
stenosis. The stenosis occurs when the artery becomes narrow and it will reduce the 
blood flow from the heart to the rest of the body. Here,

where r0(x) is the radius of artery at rest defined by

Here, r̃ = 0.1 m, Δr = 10−3 m, L = 0.14 m, x1 = 9L∕40 , x2 = L∕4 , x3 = 3L∕4 , and 
x4 = 33L∕40.

We first compute the discrete steady state solution with Q
E

j
≡ Q̂ = 0 and KE

j
≡ K̂ 

with the value K̂ as well as the cell averages A
E

j
 obtained using (3.10)–(3.13), and 

then take the initial data

which contains a small perturbation of AE as we take � = 10−3 or � = 10−4 . We use 
free boundary conditions at both x = 0 and x = L.

We compute the solutions by both the WB and NWB schemes until the final 
time t = 0.0008 s. The differences between the perturbed solutions and the steady 
state are presented in Figs. 5 and 6 , where one can clearly see that the WB scheme 
can capture the perturbation accurately and in a non-oscillatory manner for both 
� = 10−3 and � = 10−4 . On the contrary, the NWB scheme develops substantial 
oscillations for � = 10−3 ; see Fig. 5. For the smaller � = 10−4 , the oscillations practi-
cally dominate the perturbation to be captured; see Fig. 6. These WB results are in a 
good agreement with those reported in [2, §3.3.3].

It is also instructive to check whether the proposed WB scheme is capable of pre-
serving the L2-norm of the energy

B(x) = �r2
0
(x), Q̂ = Ê = 0,

r0(x) =

⎧
⎪⎪⎨⎪⎪⎩

r̃ + Δr, x ∈ [0, x1] ∪ [x4, L],

r̃ +
Δr

2

�
cos

�
x−x1

x2−x1
𝜋
�
+ 1

�
, x ∈ [x1, x2],

r̃, x ∈ [x2, x3],

r̃ −
Δr

2

�
cos

�
x−x3

x4−x3
𝜋
�
− 1

�
, x ∈ [x3, x4].

Aj(0) =

⎧⎪⎨⎪⎩

A
E

j

�
1 − � cos

�
500�

7
xj

��2
if ∈

�
9L

20
,
11L

20

�
,

A
E

j
otherwise ,

Qj(0) ≡ 0,
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for continuous solutions. Even though proving the energy stability property is out 
of reach, the results reported in Fig. 7 suggest that the energy is preserved in this 
example.

Our next goal is to compare the efficiency of the proposed WB scheme with 
its NWB counterpart. To this end, we perform a more thorough comparison 
between the WB and NWB schemes by taking into account additional compu-
tational cost of the WB scheme. We first measure the CPU time consumed by 
the WB scheme in computing the numerical solution (with � = 10−4 ) at the final 
time t = 0.0008 s on 200 uniform cells, and then refine the mesh in the NWB 
computations to 250 uniform cells, for which the same CPU time is consumed 
by the NWB scheme. The obtained results are plotted in Fig. 8 together with the 
reference solution. As one can clearly see, the WB scheme achieves a comparable 
resolution of the propagating waves despite using a coarser mesh and the WB 

E =
Q2

2A
+

2�

3
A

3

2 − �A
√
B

Fig. 5   Example 4, � = 10
−3 : Differences between the reference (top row), WB (middle row), and NWB 

(bottom row) solutions and the steady state at three different times
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solution is oscillation-free while the NWB solution contains quite large unphysi-
cal oscillations.

Finally, we verify the second order of accuracy of the proposed WB scheme. To 
this end, we slightly modify the initial data by making the initial perturbation of AE 
smooth:

Fig. 6   Example 4: Same as in Fig. 5, but for � = 10
−4

Fig. 7   Example 4: L2-norm of the energy E for � = 10
−4 (left) and 10−3 (right) as a function of time
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and compute the solution at the time t = 0.0004 s on a sequence of meshes with 500, 
1000, 2000, 4000, 8000, 16,000, and 32,000 uniform cells.

We then estimate the L1-errors and the experimental convergence rates using 
the following Runge formulae, which are based on the solutions computed on 
the three consecutive uniform grids with the mesh sizes Δx , 2Δx , and 4Δx and 
denoted by (⋅)Δx , (⋅)2Δx , and (⋅)4Δx , respectively:

Here, �12 ∶= ‖(⋅)Δx − (⋅)2Δx‖L1 and �24 ∶= ‖(⋅)2Δx − (⋅)4Δx‖L1 . The errors and corre-
sponding rates for both A and Q with both � = 10−3 and 10−4 are reported in Table 2, 
where one can clearly see that convergence rates of the proposed WB scheme 
achieves the expected second order of accuracy on smooth solutions.

Aj(0) =

⎧
⎪⎨⎪⎩

A
E

j

�
1 + � cos2

�
500�

7
xj

��2
if ∈

�
9L

20
,
11L

20

�
,

A
E

j
otherwise ,

Qj(0) ≡ 0,

Error(Δx) ≈
�2
24

|�12 − �24| , Rate(Δx) ≈ log2

(
�24
�12

)
.

Fig. 8   Example 4, � = 10
−4 : Differences between the steady state and the following three solutions: the 

WB computed on 200 uniform cells, the NWB computed on 250 cells, and the reference ones

Table 2   Example 4: L1-errors and experimental convergence rates

Δx � = 10
−3 � = 10

−4

A Q A Q

Error Rate Error Rate Error Rate Error Rate

7/100, 000 1.05e−08 1.91 7.20e−07 1.91 1.05e−09 1.91 7.20e−08 1.91
7/200, 000 2.73e−09 2.00 1.88e−07 2.00 2.74e−10 2.00 1.87e−08 2.00
7/400, 000 6.81e−10 2.01 4.68e−08 2.01 6.84e−11 2.01 4.68e−09 2.01
7/800, 000 1.69e−10 2.01 1.16e−08 2.01 1.70e−11 2.01 1.16e−09 2.01
7/1, 600, 000 4.20e−11 2.01 2.88e−09 2.01 4.21e−12 2.01 2.88e−10 2.01
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3.2.2 � Example 5—Perturbation of A for the aneurysm

In this example taken from [2, §5.3.1], we consider the “living-man” equilib-
rium with Q̂ ≠ 0 and the cross-sectional radius representing an aneurysm. Here, 
B(x) = �r2

0
(x) and the cross-sectional radius r0(x) at rest is defined by

where r̃ = 4 × 10−3 m, Δr = 10−3 m, L = 0.16 m, x1 = 9L∕40 , x2 = L∕4 , x3 = 3L∕4 , 
and x4 = 33L∕40.

We first compute the discrete steady state solution with Q
E

j
≡ Q̂ = Qin and 

KE
j
≡ K̂ with the value K̂ as well as the cell averages A

E

j
 obtained using 

(3.10)–(3.15). The values Q̂ and K̂ for different Shapiro numbers Sin are presented in 
Table 3 and the corresponding discrete steady states AE are plotted in Fig.  9. We 
then set the perturbed initial data as follows:

which contains a small perturbation of AE as we take � = 5 × 10−5.

(3.16)r0(x) =

⎧
⎪⎪⎨⎪⎪⎩

r̃, x ∈ [0, x1] ∪ [x4, L],

r̃ +
Δr

2

�
1 − cos

�
x−x1

x2−x1
𝜋
��

, x ∈ [x1, x2],

r̃ + Δr, x ∈ [x2, x3],

r̃ +
Δr

2

�
1 + cos

�
x−x3

x4−x3
𝜋
��

, x ∈ [x3, x4],

(3.17)

Aj(0) =

⎧⎪⎨⎪⎩

A
E

j
+ �2� cos2

�
125�

2
xj

�
if xj ∈

�
45L

100
,
55L

100

�
,

A
E

j
otherwise ,

Qj(0) = Q̂,

Table 3   Example 5: Q̂ and K̂ for 
different S

in

Sin Q̂ K̂

0.5 9.513275470019762 × 10
−4

2.9341289877866938 × 10
−2

0.1 8.762209514474051 × 10
−5 8.5417493720894352 × 10

−3

0.01 7.078404140725565 × 10
−6 6.5152635381013440 × 10

−3

Fig. 9   Example 5: Discrete steady state AE for different Sin
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In this example, the boundary conditions are prescribed as follows. At x = 0 , we 
set A−

j
�
−

1

2

= Ain and Q−

j
�
−

1

2

= Qin , and then evaluate K−

j
�
−

1

2

 using (2.2) and (2.3) with 

x̂ = x
j
�
−

1

2

 , which gives

After that, we obtain the point values Q+

j
�
−

1

2

 , Q−

j
�
+

1

2

 , K+

j
�
−

1

2

 and K−

j
�
+

1

2

 using (3.5) and 

(3.7), and compute A+

j
�
−

1

2

 by solving the nonlinear equation (2.22) for j = j
�
 and 

i = +.
At x = L , we set A+

jr+
1

2

= Aout , use the free boundary for Q which results in 

Q±

jr+
1

2

= Qjr
 , and compute K+

jr+
1

2

 by (2.22). The latter point value is utilized to com-

pute the slope (Kx)jr as in (3.6), which is then used to calculate the values K+

jr−
1

2

 and 

K−

jr+
1

2

 as in (3.8). Finally, A−

jr+
1

2

 is computed by solving the nonlinear equation (2.22) 

for j = jr and i = −.
We compute the numerical solutions by both the WB and NWB schemes on 200 

uniform cells until the final time t = 0.005 s. The differences between the perturbed 
solutions and the corresponding steady states for Sin = 0.5 , 0.1 and 0.01 are presented 
in the top rows in Figs. 10, 11, 12, 13, 14 and 15. As one can see, the WB scheme is 
capable of accurately capturing the perturbation (see the reference solutions shown 
in the bottom rows in Figs.  10,  12, and 14 ), while the NWB scheme fails as the 

K−

j
�
−

1

2

=
Q2

in

A−

j
�
−

1

2

+
�

3

(
A−

j
�
−

1

2

) 3

2 .

Fig. 10   Example 5, Sin = 0.5 : Differences between the WB (top row) and reference (bottom row) solu-
tions and the steady state at three different times
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magnitude of the artificial waves produced by the NWB scheme is way too large. 
In order to further investigate the performance of the NWB scheme, we refine the 
mesh and compute the NWB results using 2000 uniform cells. At this resolution, the 
perturbation is captured, but the magnitude of oscillations is still comparable or even 
higher than the size of the perturbation, especially for the large values of Sin ; see the 
second rows in Figs. 11, 13, and 15 . We therefore use even finer mesh with 20,000 
uniform cells and then the NWB results are oscillation-free; see the bottom rows in 
Figs. 11, 13, and 15 . However, as expected, the efficiency of the NWB scheme is 
extremely low, which clearly demonstrates the advantage of the WB scheme.

3.3 � Numerical test for the system (1.4)–(1.5)

In this section, we apply the studied WB and NWB CU scheme to the system 
(1.4)–(1.5) with both � ≠ 0 and � ≠ 0.

Fig. 11   Example 5, Sin = 0.5 : Differences between the solutions computed by the NWB scheme on 200 
(top row), 2000 (middle row), and 2000 (bottom row) uniform cells, and the steady state at three different 
times
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3.3.1 � Example 6—Perturbation of A for the aneurysm

This example is a modification of Example 5 with an added friction term with

As in Example 5, � = 5 × 106∕53
√
� and the cross-section function B(x) is defined 

by (3.16). We consider three cases with the values of Sin , Q̂ and K̂ given in Table 3.
We first take a steady-state solution given in terms of QE(x) ≡ Q̂ and KE(x) ≡ K̂ , 

and compute the corresponding cells averages A
E

j
 as follows. We begin with computing 

the point value A
j
�
−

1

2

 by solving the nonlinear equation (2.2) with Q
j
�
−

1

2

= Q̂ , 

K
j
�
−

1

2

= K̂ and R
j
�
−

1

2

= S
j
�
−

1

2

= 0 . Equipped with A
j
�
−

1

2

 , we proceed with computing 

the cell average A
E

j
�

 by solving the nonlinear equation (2.2), which for A = A
E

j
�

 reads as

where Rj
�
 and Sj

�
 are given by (2.17) and (2.18), respectively. We then obtain A

E

j+1
 for 

j ≥ j
�
 recursively by solving (2.2) for A = A

E

j+1
 with R = Rj+1 and S = Sj+1:

�(x) =
11�

70,000

[
1 + 0.1 sin

(
25�

2
x

)]
.

(3.18)
Q̂ 2

A
E

j
�

+
�

3

(
A

E

j
�

) 3

2 + Rj
�
+ Sj

�
= K̂,

Fig. 12   Example 5: Same as in Fig. 10, but for Sin = 0.1
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Here, the global variables Rj and Sj are also defined recursively by (2.15)–(2.18). We 
numerically solve the nonlinear equations in (3.18) and (3.19) using the same initial 
guess as in Example 5.

The obtained steady states for different values of Sin are plotted in Fig. 16. As one 
can see, the steady states are different from those obtained in the frictionless case; 
compare with Fig. 9. Next we add a small perturbation and consider the initial data 
(3.17) and the same boundary conditions as in Example 5 with the only exception 

(3.19)

Q̂ 2

A
E

j+1

+
�

3

(
A

E

j+1

) 3

2 + Rj −
�

3

(
A

E

j
+ A

E

j+1
+

√
A

E

j
A

E

j+1

)(√
Bj+1 −

√
Bj

)

+ Sj +
Q̂Δx

2

[
�(xj+1)

A
E

j+1

+
�(xj)

A
E

j

]
= K̂, j = j

�
,… , jr − 1.

Fig. 13   Example 5: Same as in Fig. 11, but for Sin = 0.1
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that we now do not prescribe the value Aout . Instead, we compute A+

jr+
1

2

 by solving 

the nonlinear equation (2.22) for j = jr and i = + with Q
jr+

1

2

= Q̂ and K
jr+

1

2

= K̂.
We compute the numerical solution by both the WB and NWB schemes until 

the final time t = 0.005 s. The differences between the perturbed solutions and 
the corresponding steady states are presented in Figs. 17, 18, 19, 20, 21 and 22. 
One can observe that, as in Example 5, the WB scheme can capture the small 
perturbation accurately, while the NWB scheme fails even in the presence of the 
friction term.

4 � Conclusion

In this paper, we have developed a new second-order well-balanced (WB) central-
upwind (CU) scheme for several one-dimensional blood flow models. In order to 
achieve this goal, we have extended the flux globalization approach to the studied 
models and implemented it to develop the WB CU scheme which can preserve 
both “man-at-eternal-rest” (zero-velocity) and “living-man” (non-zero velocity) 
steady-state solutions. We have tested the proposed WB CU scheme on a number 
of numerical examples and demonstrated that it clearly outperforms its non-well-
balanced counterpart despite an increased computational cost per time step.

Fig. 14   Example 5: Same as in Figs. 10 and 12 , but for Sin = 0.01
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Solving (2.22) by Newton’s method

In order to numerically solve (2.22), we first rewrite it in the following form:

Fig. 15   Example 5: Same as in Figs. 11 and 13 , but for Sin = 0.01

Fig. 16   Example 6: Discrete steady state AE for different Sin
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which we consider for positive Ai

j+
1

2

 only. It is easy to show that this function admits 

it minimum at the point

and therefore, three possible cases are to be considered.
Case 1: F

(
Ǎi

j+
1

2

)
> 0 . This case is unphysical, but may occur in the transcriti-

cal case due to the numerical errors. In this case, (A.1) has no positive solutions 
and instead of solving (A.1), we locally apply the minmod reconstruction (in 
either the cell Cj if i = − in (A.1) or Cj+1 if i = + in (A.1)) directly to A.

Case 2: F
(
Ǎi

j+
1

2

)
= 0 . This is a transcritical case, in which the only positive 

solution of (A.1) is Ai

j+
1

2

= Ǎi

j+
1

2

.

Case 3: F
(
Ǎi

j+
1

2

)
< 0 . This is generic case, in which (A.1) has two positive solu-

tions: a supercritical (with Ai

j+
1

2

< Ǎi

j+
1

2

 ) and a subcritical (with Ai

j+
1

2

> Ǎi

j+
1

2

 ) one. In 

all of the studied numerical examples, the blood flow is subcritical and hence we 
find the subcritical root using Newton’s method directly applied to (A.1). As the 

(A.1)F(Ai

j+
1

2

) ∶=

(
Qi

j+
1

2

)2

Ai

j+
1

2

+
�

3

(
Ai

j+
1

2

)
3

2 + R
j+

1

2

+ S
j+

1

2

− Ki

j+
1

2

= 0,

Ai

j+
1

2

= Ǎi

j+
1

2

∶=

[
2

𝛽

(
Qi

j+
1

2

)2] 2

5

,

Fig. 17   Example 6, Sin = 0.5 : Differences between the WB (top row) and reference (bottom row) 
solutions and the steady state at three different times 
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function F  is convex, the use of any initial guess larger than Ǎi

j+
1

2

 will ensure New-

ton’s method to converge to the subcritical root. In the numerical examples reported 
in Sect. 3, we have taken the following initial guesses: Aref (specified after Eq. (3.1)) 
in Examples 1–3 and Ain (given in (3.15)) in Examples 4–6.

Non‑well‑balanced central‑upwind scheme

In this appendix, we briefly describe the NWB CU scheme for the system (1.4), 
(1.5), which we have used in the numerical examples reported in Sect. 3.

We first write the system of balance laws (1.4), (1.5) in the vector form

with

Ut +F(U)x = S(U),

Fig. 18   Example 6, Sin = 0.5 : Differences between the solutions computed by the NWB scheme 
on 200 (top row), 2000 (middle row), and 2000 (bottom row) uniform cells, and the steady state 
at three different times 
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Fig. 19   Example 6: Same as in Fig. 17, but for Sin = 0.1

Fig. 20   Example 6: Same as in Fig. 18, but for Sin = 0.1
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and then evolve the cell averages Uj by solving the following system of ODEs:

Here, H
j+

1

2

 are the CU numerical fluxes

with �U
j+

1

2

 given by (2.8) with

and a±
j+

1

2

 given by (2.9). The point values U±

j+
1

2

 , which are used in (B.1), (2.8), (B.2) 

and (2.9), are now computed by applying the minmod reconstruction (2.19)–(2.21) 
applied to U rather than to F.

F(U) =

�
Q

Q2

A
+

�

3
A

3

2

�
, S(U) =

�
0

�A
�√

B
�
x
− �

Q

A

�
,

dUj

dt
= −

H
j+

1

2

−H
j−

1

2

Δx
+ � Aj

√
B
j+

1

2

−
√

B
j−

1

2

Δx
− �j

Qj

Aj

.

(B.1)H
j+

1

2

=

a+
j+

1

2

F
−

j+
1

2

− a−
j+

1

2

F
+

j+
1

2

a+
j+

1

2

− a−
j+

1

2

+

a+
j+

1

2

a−
j+

1

2

a+
j+

1

2

− a−
j+

1

2

(
U

+

j+
1

2

− U
−

j+
1

2

− �U
j+

1

2

)

(B.2)U
∗

j+
1

2

=

a+
j+

1

2

U
+

j+
1

2

− a−
j+

1

2

U
−

j+
1

2

−

{
F
(
U

+

j+
1

2

)
−F

(
U

−

j+
1

2

)}

a+
j+

1

2

− a−
j+

1

2

,

Fig. 21   Example 6: Same as in Figs. 17 and 19, but for Sin = 0.01
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Boundary conditions for the non‑well‑balanced scheme

In Examples 1–3 reported in Sect. 3.1, we have prescribed the Dirichlet boundary 
conditions, namely, the values of A and Q at the left ( A−

j
�
−

1

2

 , Q−

j
�
−

1

2

 ) and right ( A+

jr+
1

2

 , 

Q+

jr+
1

2

 ) endpoints of the computational domain. We then use these values to compute 

the slopes of A in the cells Cj
�
 and Cjr

 as follows:

We then use these slopes to compute the corresponding boundary point values of A:

(Ax)j
�
= minmod

( Aj
�
− A−

j
�
−

1

2

Δx∕2
,
Aj

�
+1 − Aj

�

Δx

)
,

(Ax)jr = minmod

(
Ajr

− Ajr−1

Δx
,

A+

jr+
1

2

− Ajr

Δx∕2

)
.

Fig. 22   Example 6: Same as in Fig. 18 and 20, but for Sin = 0.01
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The slopes of Q and the boundary point values Q+

j
�
−

1

2

 and Q−

jr+
1

2

 are computed 

similarly.
In Examples 4 reported in Sect.  3.2, we have used free boundary conditions, 

namely, we set

In Example 5 reported in Sect.  3.2, the boundary conditions are prescribed as in 
Examples 1–3 except for Q at the right endpoint of the computational domain, which 
is set to Q±

jr+
1

2

= Qjr
.

In Example 6 reported in Sect. 3.3, the boundary conditions are the same as in 
Example 5 with the only exception that A+

jr+
1

2

 is now computed by solving the non-

linear equation (2.22) for j = jr and i = + with Q
jr+

1

2

= Q̂ and K
jr+

1

2

= K̂.
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