
New Adaptive Low-Dissipation Central-Upwind Schemes

Shaoshuai Chu∗ and Alexander Kurganov†

Abstract

We introduce new second-order adaptive low-dissipation central-upwind (LDCU) schemes
for the one- and two-dimensional hyperbolic systems of conservation laws. The new adaptive
LDCU schemes employ the LDCU numerical fluxes (recently proposed in [A. Kurganov
and R. Xin, J. Sci. Comput., 96 (2023), Paper No. 56]) computed using the point values
reconstructed with the help of adaptively selected nonlinear limiters. To this end, we use a
smoothness indicator to detect “rough” parts of the computed solution, where the piecewise
linear reconstruction is performed using an overcompressive limiter, which leads to extremely
sharp resolution of shock and contact waves. In the “smooth” areas, we use a more dissipative
limiter to prevent appearance of artificial kinks and staircase-like structures there. In order to
avoid oscillations, we perform the reconstruction in the local characteristic variables obtained
using the local characteristic decomposition. We test two different smoothness indicators
and apply the developed schemes to the one- and two-dimensional Euler equations of gas
dynamics. The obtained numerical results clearly demonstrate that the new adaptive LDCU
schemes outperform the original ones.

Key words: Low-dissipation central-upwind schemes, minmod-based smoothness indicator, weak
local residual, overcompressive limiters, dissipative limiters, Euler equations of gas dynamics.
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1 Introduction

This paper focuses on developing new adaptive numerical methods for the hyperbolic systems of
conservation laws, which in the one- (1-D) and two-dimensional (2-D) cases, read as

Ut + F (U)x = 0, (1.1)

and
Ut + F (U)x + G(U)y = 0, (1.2)

respectively. Here, x and y are spatial variables, t is the time, U ∈ Rd is a vector of unknown
functions, and F : Rd → Rd and G : Rd → Rd are nonlinear fluxes.
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It is well-known that even when the initial data are smooth, solutions of (1.1) and (1.2) can
produce extremely complex nonsmooth wave patterns including shocks, rarefactions, and contact
discontinuities. This makes it quite challenging to develop accurate and reliable shock-capturing
numerical methods for (1.1) and (1.2).

A library of numerical methods for the studied systems have been introduced since the pioneer-
ing works of Friedrichs [9], Lax [28], and Godunov [13]. We refer the reader to the monographs
and review papers [2, 18, 22, 29, 39, 43] and references therein, where one can find a description of
many existing numerical methods. In this paper, we restrict our consideration to semi-discrete
finite-volume (FV) methods, where the solution, represented in terms of its cell averages, is evolved
in time with the help of the numerical fluxes, computed, in turn, using the reconstructed point
values of U at the boundaries of the FV cells. Many of such schemes are upwind in the sense
that their numerical fluxes are based on either exact or approximate solution of the (generalized)
Riemann problems arising at each cell interface. We, however, focus on the Riemann-solver-free
central-upwind (CU) schemes, which provide one with accurate, efficient and robust tools for a
wide variety of hyperbolic systems. The CU schemes belong to the class of non-oscillatory central
schemes, but they have a certain upwind nature as they rely on the local one-sided speeds of prop-
agation, which can be estimated using the largest and smallest eigenvalues of the corresponding
Jacobians. The original CU schemes from [24, 26] contain relatively large amount of numerical
dissipation, which was reduced in [25] and recently in [27], where built-in “anti-diffusion” terms
were introduced. The amount of numerical dissipation can be also reduced by applying the local
characteristic decomposition (LCD) technique to the numerical diffusion of the CU fluxes; see [3].

In this paper, we use the low-dissipation CU (LDCU) numerical fluxes from [27], and further
enhance the resolution of the “rough” parts of the computed solution by applying a new scheme
adaption approach: The point values used to evaluate the LDCU fluxes are reconstructed with
the help of adaptively selected nonlinear limiters, which are, in general, required to make the
reconstructed point values non-oscillatory. A variety of limiters are available; see, e.g., [2,18,29,30,
32,42,43] and references therein. Many of the limiters can be classified as dissipative, compressive,
or overcompressive as it was done in [30]. The use of compressive and overcompressive limiters
leads to very sharp resolution of discontinuous parts of the approximated solution, while dissipative
limiters may smear the jumps. At the same time, applying compressive and overcompressive
limiters in the smooth areas typically results in the artificial sharpening of the smooth solution
profiles, that is, in the appearance of kinks or staircase-like structures, or even non-physical jumps.

We therefore switch between different limiters. To this end, we need to automatically detect
“rough” (nonsmooth) parts of the computed solution with the help of a smoothness indicator
(SI). Many different SIs are readily available; see, e.g., [1, 4, 7, 10–12, 16, 33, 35, 44] and references
therein. In this paper, we test two different SIs: a slightly modified minmod (MM)-based shock
indicator from [47] (see also [17,41]) and a SI based on weak local residuals (WLR) from [23] (see
also [4,20,21]). In the areas identified as being “rough”, we use the overcompressive SBM limiters
from [30], while switching to the dissipative Minmod2 limiter elsewhere. It is well-known that the
use of any of these two limiters may lead to numerical oscillations in the vicinities of shock and
contact discontinuities. In order to reduce these oscillations, we perform the reconstruction in the
local characteristic variables rather than in the conservative or primitive ones (this strategy was
advocated in, e.g., [34]). We switch to the characteristic variables using the LCD, which is often
used in the context of high-order schemes, but can also be implemented to enhance the resolution
of second-order schemes; see, e.g., [3, 19, 34,39] and references therein.

The paper is organized as follows. In §2, we review the recently proposed 1-D LDCU scheme
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from [27]. We then introduce the adaptive schemes that employ either the MM- or WLR-based
SI to detect the “rough” areas. In §3, we extend the proposed adaptive LDCU scheme to the 2-D
case. In §4, we apply the developed schemes to a number of 1-D and 2-D numerical examples
for the Euler equations of gas dynamics. We demonstrate that the adaptive LDCU schemes
contain substantially smaller amount of numerical dissipation and achieve much higher resolution
compared with the LDCU schemes based on the Minmod2 limiters applied throughout the entire
computational domain. Finally, we give some concluding remarks in §5.

2 One-Dimensional Scheme Adaption Algorithm

In this section, we consider the 1-D conservation laws (1.1) and describe the 1-D adaptive algo-
rithm.

2.1 1-D Low-Dissipation Central-Upwind (LDCU) Schemes

Assume that the computational domain is covered with the uniform cells Cj := [xj− 1
2
, xj+ 1

2
] with

xj+ 1
2
− xj− 1

2
≡ ∆x centered at xj = (xj− 1

2
+ xj+ 1

2
)/2 and denote by U j(t) cell averages of U(·, t)

over the corresponding intervals Cj, that is,

U j(t) :≈ 1

∆x

∫
Cj

U(x, t) dx.

We suppose that at a certain time t ≥ 0, the point values of the computed solution U j(t) are
available. Note that all of the indexed quantities are time-dependent, but from here on, we will
suppress the time-dependence of all of the indexed quantities for the sake of brevity.

According to the semi-discrete LDCU scheme from [27], the computed cell averages are evolved
in time by numerically solving the following system of ordinary differential equations (ODEs):

dU j

dt
= −

F j+ 1
2
−F j− 1

2

∆x
, (2.1)

where F j+ 1
2

are the LDCU numerical fluxes defined by

F j+ 1
2

(
U−
j+ 1

2

,U+
j+ 1

2

)
=
a+
j+ 1

2

F−
j+ 1

2

− a−
j+ 1

2

F+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

(
U+
j+ 1

2

−U−
j+ 1

2

)
+ qj+ 1

2
.

Here, F±
j+ 1

2

:= F
(
U±
j+ 1

2

)
and U±

j+ 1
2

are the right/left-sided point values of U at the cell interface

x = xj+ 1
2
. The point values U±

j+ 1
2

are reconstructed out of the given set of cell averages {U j}
using a proper nonlinear limiter; see §2.1.1. The one-sided local speeds of propagation a±

j+ 1
2

are estimated using the largest and the smallest eigenvalues of the Jacobian A(U) := ∂F
∂U

(U),
λ1(A(U)) ≤ . . . ≤ λd(A(U)). This can be done, for example, by taking

a+
j+ 1

2

= max
{
λd
(
A(U+

j+ 1
2

)
)
, λd
(
A(U−

j+ 1
2

)
)
, 0
}
,

a−
j+ 1

2

= min
{
λ1
(
A(U+

j+ 1
2

)
)
, λ1
(
A(U−

j+ 1
2

)
)
, 0
}
.
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Finally, qj+ 1
2

is a built-in “anti-diffusion” term, which can be derived for a particular system

at hand. For instance, we consider the 1-D Euler equations of gas dynamics, which read as (1.1)
with

U =
(
ρ, ρu,E

)>
and F =

(
ρu, ρu2 + p, u(E + p)

)>
. (2.2)

Here, ρ, u, p, and E are the density, velocity, pressure, and total energy, respectively, and the
system is completed through the following equations of state (EOS) for ideal gases:

p = (γ − 1)
[
E − 1

2
ρu2
]
, (2.3)

where the parameter γ represents the specific heat ratio. For the Euler system (1.1), (2.2), (2.3),
the “anti-diffusion” term qj+ 1

2
has been rigorously derived in [27] and it is given by

qj+ 1
2

= minmod
(
− a−

j+ 1
2

(ρ∗
j+ 1

2
− ρ−

j+ 1
2

), a+
j+ 1

2

(ρ+
j+ 1

2

− ρ∗
j+ 1

2
)
)


1

u∗
j+ 1

2

1
2

(
u∗
j+ 1

2

)2
 .

Here, ρ∗
j+ 1

2

and (ρu)∗
j+ 1

2

are the first and second components of

U ∗
j+ 1

2
=
a+
j+ 1

2

U+
j+ 1

2

− a−
j+ 1

2

U−
j+ 1

2

−
{
F (U+

j+ 1
2

)− F (U−
j+ 1

2

)
}

a+
j+ 1

2

− a−
j+ 1

2

,

u∗
j+ 1

2

= (ρu)∗
j+ 1

2

/ρ∗
j+ 1

2

, and the minmod function is defined by

minmod(z1, z2, . . .) :=


minj{zj} if zj > 0 ∀ j,
maxj{zj} if zj < 0 ∀ j,
0 otherwise.

2.1.1 Nonlinear Limiters

As mentioned before, the point values U±
j+ 1

2

are obtained with the help of a conservative piecewise

linear reconstruction, designed using a proper nonlinear limiter. In this paper, we use a family of
the SBM limiters (introduced in [30]) applied to the local characteristic variables. To this end, we

introduce the matrices Âj+ 1
2

= A
(
(U j +U j+1)/2

)
and compute the matrices Rj+ 1

2
and R−1

j+ 1
2

such

that R−1
j+ 1

2

Âj+ 1
2
Rj+ 1

2
are diagonal matrices. We then introduce the local characteristic variables Γ

in the neighborhood of x = xj+ 1
2
:

Γk = R−1
j+ 1

2

U k, k = j − 1, j, j + 1, j + 2.

Equipped with the values Γj−1, Γj, Γj+1, and Γj+2, we compute the slopes

(Γx)j = φSBM
θ,τ

(
Γj+1 − Γj

Γj − Γj−1

)
Γj − Γj−1

∆x
(2.4)
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and

(Γx)j+1 = φSBM
θ,τ

(
Γj+2 − Γj+1

Γj+1 − Γj

)
Γj+1 − Γj

∆x
, (2.5)

where the two-parameter SBM function

φSBM
θ,τ (r) :=


0 if r < 0,

min{rθ, 1 + τ(r − 1)} if 0 < r ≤ 1,

rφSBM
θ,τ (1

r
) otherwise,

(2.6)

is applied in the component-wise manner.
The parameters θ ∈ [1, 2] and τ in (2.6) can be used to control the amount of numerical

dissipation present in the resulting scheme. First, larger θ’s correspond to less dissipative but, in
general, more oscillatory reconstructions. In all of the numerical examples reported in §4, we have
taken θ = 2. Second, according to [30], if τ ≥ 0.5, then the SBM limiter is dissipative and its use
typically causes contact discontinuities to be severely smeared in time. If 0 ≤ τ < 0.5, then the
SBM limiter is compressive and in this case, contact waves are usually resolved sharply within
few points, but smooth extrema might be slightly compressed resulting in continuous solution
profiles having a kink. If τ < 0, then the limiter is overcompressive so that contact discontinuities
typically stay very sharp for long time, while smooth solutions become overcompressed as time
evolves resulting in the appearance of artificial O(1) jump discontinuities.

Equipped with (2.4) and (2.5), we evaluate

Γ−
j+ 1

2

= Γj +
∆x

2
(Γx)j and Γ+

j+ 1
2

= Γj+1 −
∆x

2
(Γx)j+1,

and then obtain the corresponding point values of U by

U±
j+ 1

2

= Rj+ 1
2
Γ±
j+ 1

2

.

Remark 2.1 For detailed explanations on how the matrices Rj+ 1
2

and R−1
j+ 1

2

are computed in the

case of the Euler equation of gas dynamics, we refer the reader to [3, Appendix A].

2.2 One-Dimensional Adaptive Schemes

We now turn to the description of the proposed adaptive schemes. The key ingredient of the
new schemes is the use of the different limiters from the family (2.6) in different parts of the
computational domain. In particular, we use an overcompressive limiter with τ = −0.25 in the
“rough” parts of the computed solution and a dissipative limiter with τ = 0.5 elsewhere. The
latter limiter is, in fact, the Minmod2 limiter, which can be written in a simpler form since (2.4)
and (2.5) with θ = 2 and τ = 0.5 reduce to

(Γx)j = minmod

(
2

Γj − Γj−1

∆x
,

Γj+1 − Γj−1

2∆x
, 2

Γj+1 − Γj

∆x

)
,

and

(Γx)j+1 = minmod

(
2

Γj+1 − Γj

∆x
,

Γj+2 − Γj

2∆x
, 2

Γj+2 − Γj+1

∆x

)
.

In order to implement this simple scheme adaption approach, we need to automatically detect
“rough” parts of the computed solution. This is done using either the MM- or WLR-based SIs
briefly described in §2.2.1 and §2.2.2 below.
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2.2.1 Minmod-Based Smoothness Indicator

We first compute the MM-based quantities

sj = minmod
(
ρj+1 − ρj, ρj − ρj−1

)
,

and then we say that the cell Cj is “rough” if |sj| > max
{
|sj−1|, |sj+1|

}
+ δ, where δ is a small

positive number. The parameter δ has to be selected for each problem at hand and it should
indicate a size of a jump in ρ, which we neglect when detecting “rough” parts of the solution. In
fact, this SI is not very sensitive to the choice of δ and in all of the numerical examples reported
in §4, we have taken δ = 10−4.

2.2.2 Weak Local Residual-Based Smoothness Indicator

In order to detect “rough” areas, one can also use the WLR-based SI, which we obtain as follows.
First, we assume that the cell averages U j are available at a certain time level t = tn and the
two previous time levels t = tn−1 (with tn − tn−1 = ∆tn−1) and tn−2 (with tn−1 − tn−2 = ∆tn−2).
In addition, we assume that the solution has been reconstructed at t = tn−1 and tn−2 and the
corresponding point values at the cell interfaces x = xj+ 1

2
are available. We will denote these

reconstructed point values by Un−1
j+ 1

2

and Un−2
j+ 1

2

. Recall that we, in fact, obtain two point values

at each cell interface (U±
j+ 1

2

) and any of them can be used to evaluate the WLRs for the density

equation ρt + (ρu)x = 0. We denote these WLRs by ε
n− 3

2

j+ 1
2

and compute them according to [23]:

ε
n− 3

2

j+ 1
2

=
∆x

6

[
ρn−1
j+ 3

2

− ρn−2
j+ 3

2

+ 4
(
ρn−1
j+ 1

2

− ρn−2
j+ 1

2

)
+ ρn−1

j− 1
2

− ρn−2
j− 1

2

]
+

∆tn−2

4

[
(ρu)n−1

j+ 3
2

− (ρu)n−1
j− 1

2

+ (ρu)n−2
j+ 3

2

− (ρu)n−2
j− 1

2

]
.

(2.7)

The desired SIs are then obtained at each cell interface x = xj+ 1
2

by setting

ε
n− 3

2

j+ 1
2

:=
1

6

[
ε
n− 3

2

j− 1
2

+ 4ε
n− 3

2

j+ 1
2

+ ε
n− 3

2

j+ 3
2

]
.

As mentioned in [23], the size of the WLRs and thus of the SIs for second-order schemes are
expected to be

||εn−
3
2 ||∞ ∼


∆ near shock waves,

∆α near contact,

∆4 in smooth regions,

(2.8)

where ∆ := max{∆t,∆x} and 1 < α ≤ 2; see also [20].
Finally, we take advantage of (2.8), which suggests that the size of SIs ranges from O(∆) near

shocks to O(∆4) in the smooth regions and develop the following simple strategy for the automatic
detection of “rough” parts of the computed solution {U j}. We mark the cell Cj as “rough” as
long as

ε
n− 3

2
j > C(∆x)2, (2.9)

where C is a positive tunable constant to be selected for each problem at hand. The robustness of
this shock detection strategy depends on the sensitivity of the proposed algorithm to the choice
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of C. In principle, C can be tuned on a coarse mesh and then used for fine mesh computations,
but as we demonstrate in Examples 2 in §4, this approach may fail. Therefore, even though the
use of the WLR-based SI may lead to extremely sharp results (like in, for instance, Example 3 in
§4), the adaption strategy that relies on this SI may not be robust.

Remark 2.2 While implementing (2.7), we have used Uj+ 1
2

= U−
j+ 1

2

in all the numerical examples

reported in §4. Other choices like Uj+ 1
2

= U+
j+ 1

2

or Uj+ 1
2

=
(
U−
j+ 1

2

+ U+
j+ 1

2

)
/2 can also be used

with no visible advantages or disadvantages of any of them.

3 Two-Dimensional Scheme Adaption Algorithm

In this section, we extend the 1-D adaptive strategy introduced in §2 to the 2-D hyperbolic systems
of conservation laws (1.2).

3.1 2-D Low-Dissipation Central-Upwind (LDCU) Schemes

Let the computational domain be covered with uniform cells Cj,k := [xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
]

with xj+ 1
2
−xj− 1

2
≡ ∆x and yk+ 1

2
− yk− 1

2
≡ ∆y centered at (xj, yk) with xj = (xj− 1

2
+xj+ 1

2
)/2 and

yk = (yk− 1
2

+ yk+ 1
2
)/2. We assume that the cell averages,

U j,k :≈ 1

∆x∆y

∫∫
Cj,k

U(x, y, t) dy dx,

have been computed at a certain time t ≥ 0.
According to the semi-discrete LDCU scheme from [27], the computed cell averages are evolved

in time by numerically solving the following system of ODEs:

dU j,k

dt
= −

F j+ 1
2
,k −F j− 1

2
,k

∆x
−

Gj,k+ 1
2
− Gj,k− 1

2

∆y
, (3.1)

where F j+ 1
2
,k = F j+ 1

2
,k

(
U−
j+ 1

2
,k
,U+

j+ 1
2
,k

)
and Gj,k+ 1

2
= Gj,k+ 1

2

(
U−
j,k+ 1

2

,U+
j,k+ 1

2

)
are the LDCU nu-

merical fluxes defined by

F j+ 1
2
,k =

a+
j+ 1

2
,k
F−
j+ 1

2
,k
− a−

j+ 1
2
,k
F+
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+
a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

[
U+
j+ 1

2
,k
−U−

j+ 1
2
,k

]
+ qx

j+ 1
2
,k
,

Gj,k+ 1
2

=
b+
j,k+ 1

2

G−
j,k+ 1

2

− b−
j,k+ 1

2

G+
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
U−
j,k+ 1

2

−U+
j,k+ 1

2

]
+ qy

j,k+ 1
2

.

Here, F±
j+ 1

2
,k

:= F
(
U±
j+ 1

2
,k

)
and G±

j,k+ 1
2

:= G
(
U±
j,k+ 1

2

)
, and U±

j+ 1
2
,k

and U±
j,k+ 1

2

are the one-sided

point values of U at the cell interfaces (xj+ 1
2
, yk) and (xj, yk+ 1

2
), respectively. We reconstruct the

point values U±
j+ 1

2
,k

and U±
j,k+ 1

2

using the LCD; see Appendix A for details. The one-sided local

speeds of propagation in the x- and y-directions, a±
j+ 1

2
,k

and b±
j,k+ 1

2

, can be estimated by the largest
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and smallest eigenvalues of the Jacobians A(U) := ∂F
∂U

(U) and B(U) := ∂G
∂U

(U), for example, by
setting

a+
j+ 1

2
,k

= max
{
λd
(
A(U+

j+ 1
2
,k

)
)
, λd
(
A(U−

j+ 1
2
,k

)
)
, 0
}
,

a−
j+ 1

2
,k

= min
{
λ1
(
A(U+

j+ 1
2
,k

)
)
, λ1
(
A(U−

j+ 1
2
,k

)
)
, 0
}
,

b+
j,k+ 1

2

= max
{
λd
(
B(U+

j,k+ 1
2

)
)
, λd
(
B(U−

j,k+ 1
2

)
)
, 0
}
,

b−
j,k+ 1

2

= min
{
λ1
(
B(U+

j,k+ 1
2

)
)
, λ1
(
B(U−

j,k+ 1
2

)
)
, 0
}
.

Finally, qx
j+ 1

2
,k

and qy
j,k+ 1

2

are built-in “anti-diffusion” terms, which can be derived for a par-

ticular system (1.2) at hand. For instance, we consider the 2-D Euler equations of gas dynamics,
which read as (1.2) with

U =
(
ρ, ρu, ρv, E

)>
, F =

(
ρu, ρu2+p, ρuv, u(E+p)

)>
, G =

(
ρv, ρuv, ρv2+p, v(E+p)

)>
, (3.2)

where v is the y-velocity and the other variables are as the same as in (2.2). The system (3.2) is
completed through the following EOS for ideal gases:

p = (γ − 1)
[
E − ρ

2
(u2 + v2)

]
. (3.3)

For the sake of brevity, we omit the details on the built-in “anti-diffusion” terms qx
j+ 1

2
,k

and qy
j,k+ 1

2

.

For the system (1.2), (3.2)–(3.3), they have been derived in [27].

3.2 Two-Dimensional Adaptive Schemes

We now turn to the description of the proposed adaptive schemes for the 2-D system. As in
the 1-D case, we use an overcompressive SBM limiter with τ = −0.25 in the “rough” parts of
the computed solution and a dissipative Minmod2 limiter elsewhere. To this end, we detect the
“rough” parts of the numerical solution using either the MM- or WLR-based SIs described in
§3.2.1 and §3.2.2 below.

3.2.1 Two-Dimensional Minmod-Based Smoothness Indicator

The 1-D MM-based SI introduced in §2.2.1, is extended to the 2-D case in the “dimension-by-
dimension” manner. We first compute the MM-based quantities in the x-direction,

sxj,k = minmod
(
ρj+1,k − ρj,k, ρj,k − ρj−1,k

)
,

and use the overcompressive SBM limiter to compute the slopes in the x-direction only in those
cell Cj,k, where |sxj,k| > max

{
|sxj−1,k|, |sxj+1,k|

}
+δ. Similarly, we compute the MM-based quantities

in the y-direction,

syj,k = minmod
(
ρj,k+1 − ρj,k, ρj,k − ρj,k−1

)
,

and use the overcompressive SBM limiter to compute the slopes in the y-direction only in those
cell Cj,k, where |syj,k| > max

{
|syj,k−1|, |s

y
j,k+1|

}
+ δ.
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3.2.2 Two-Dimensional Weak Local Residual-Based Smoothness Indicator

One can also detect the “rough” parts of the numerical solution using the 2-D WLR-based SI,
which we obtain as follows. First, we compute the WLRs introduced in [23]. For the 2-D density
equation ρt + (ρu)x + (ρv)y = 0, these WLRs are

ε
n− 3

2

j+ 1
2
,k+ 1

2

=
1

36∆
∆x∆y Un−

3
2

j+ 1
2
,k+ 1

2

+
1

12∆

(
∆y∆tFn−

3
2

j,k + ∆x∆tGn−
3
2

j+ 1
2
,k+ 1

2

)
,

where ∆ := max{∆t,∆x,∆y} and

Un−
3
2

j+ 1
2
, k+ 1

2

=
[
ρn−1
j+ 3

2
,k+ 3

2

− ρn−2
j+ 3

2
,k+ 3

2

+ ρn−1
j+ 3

2
,k− 1

2

− ρn−2
j+ 3

2
,k− 1

2

+ ρn−1
j− 1

2
,k+ 3

2

− ρn−2
j− 1

2
,k+ 3

2

+ρn−1
j− 1

2
,k− 1

2

− ρn−2
j− 1

2
,k− 1

2

]
+ 4

[
ρn−1
j+ 3

2
,k+ 1

2

− ρn−2
j+ 3

2
,k+ 1

2

+ ρn−1
j− 1

2
,k+ 1

2

− ρn−2
j− 1

2
,k+ 1

2

+ρn−1
j+ 1

2
,k+ 3

2

− ρn−2
j+ 1

2
,k+ 3

2

+ ρn−1
j+ 1

2
,k− 1

2

− ρn−2
j+ 1

2
,k− 1

2

]
+ 16

[
ρn−1
j+ 1

2
,k+ 1

2

− ρn−2
j+ 1

2
,k+ 1

2

]
,

Fn−
3
2

j+ 1
2
,k+ 1

2

=
[
(ρu)n−1

j+ 3
2
,k+ 3

2

− (ρu)n−1
j− 1

2
,k+ 3

2

+ (ρu)n−1
j+ 3

2
,k− 1

2

− (ρu)n−1
j− 1

2
,k− 1

2

+(ρu)n−2
j+ 3

2
,k+ 3

2

− (ρu)n−2
j− 1

2
,k+ 3

2

+ (ρu)n−2
j+ 3

2
,k− 1

2

− (ρu)n−2
j− 1

2
,k− 1

2

]
+ 4

[
(ρu)n−1

j+ 3
2
,k+ 1

2

− (ρu)n−1
j− 1

2
,k+ 1

2

− (ρu)n−2
j+ 3

2
,k+ 1

2

− (ρu)n−2
j− 1

2
,k+ 1

2

]
,

Gn−
3
2

j+ 1
2
,k+ 1

2

=
[
(ρv)n−1

j+ 3
2
,k+ 3

2

− (ρv)n−1
j+ 3

2
,k− 1

2

+ (ρv)n−1
j− 1

2
,k+ 3

2

− (ρv)n−1
j− 1

2
,k− 1

2

+(ρv)n−2
j+ 3

2
,k+ 3

2

− (ρv)n−2
j+ 3

2
,k− 1

2

+ (ρv)n−2
j− 1

2
,k+ 3

2

− (ρv)n−2
j− 1

2
,k− 1

2

]
+ 4

[
(ρv)n−1

j+ 1
2
,k+ 3

2

− (ρv)n−1
j+ 1

2
,k− 1

2

− (ρv)n−2
j+ 1

2
,k+ 3

2

− (ρv)n−2
j+ 1

2
,k− 1

2

]
.

Note that no values at the cell corners (xj+ 1
2
, yk+ 1

2
) are reconstructed. We therefore set

U `
j+ 1

2
,k+ 1

2
:=

1

4

[
U

`

j,k +U
`

j+1,k +U
`

j,k+1 +U
`

j+1,k+1

]
, ` = n− 2, n− 1,

where U
n−2
j,k and U

n−1
j,k denote the cell averages computed at times t = tn−2 and t = tn−1,

respectively.
The desired SIs are then obtained at each cell corner (xj+ 1

2
, yk+ 1

2
) using a proper averaging,

for instance, by

ε
n− 3

2

j+ 1
2
,k+ 1

2

: =
1

36

[
ε
n− 3

2

j− 1
2
,k− 1

2

+ ε
n− 3

2

j− 1
2
,k+ 3

2

+ ε
n− 3

2

j+ 3
2
,k− 1

2

+ ε
n− 3

2

j+ 3
2
,k+ 3

2

+ 4
(
ε
n− 3

2

j− 1
2
,k+ 1

2

+ ε
n− 3

2

j+ 1
2
,k− 1

2

+ ε
n− 3

2

j+ 1
2
,k+ 3

2

+ ε
n− 3

2

j+ 3
2
,k+ 1

2

)
+ 16 ε

n− 3
2

j+ 1
2
,k+ 1

2

]
.

As mentioned in [23], the size of the WLRs and thus of the SIs for second-order schemes are
expected to be the same as in (2.8). We therefore act similarly to (2.9) and mark the cell Cj,k as

“rough” as long as ε
n− 3

2

j+ 1
2
,k+ 1

2

> Cmax{(∆x)2, (∆y)2}, where C is a positive tunable constant to be

selected for each problem at hand.
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4 Numerical Examples

In this section, we test the developed adaptive schemes on several numerical examples. To this end,
we compare the performance of the original LDCU and the adaptive LDCU schemes by applying
them to a number of initial-boundary value problems for the 1-D and 2-D Euler equations of gas
dynamics. The adaptive LDCU schemes with the MM- and WLR-based SIs used to detect the
“rough” areas will be referred to as the A-MM and A-WLR schemes, respectively.

In all of the numerical examples reported, we have solved the ODE systems (2.1) and (3.1)
using the three-stage third-order strong stability preserving (SSP) Runge-Kutta method; see,
e.g., [14, 15]. We take γ = 1.4 in Example 1–5 and γ = 5/3 in Example 6. The CFL number is
0.4 in all of the examples.

4.1 One-Dimensional Examples

Example 1—Shock-Entropy Wave Interaction Problem. In the first example taken from
[40], we consider the shock-entropy wave interaction problem. The initial conditions,

(ρ, u, p)(x, 0) =

{
(1.51695, 0.523346, 1.805), x < −4.5,

(1 + 0.1 sin(20x), 0, 1), x > −4.5,

correspond to a forward-facing shock wave of Mach number 1.1 interacting with high-frequency
density perturbations, that is, as the shock wave moves, the perturbations spread ahead. We set
the free boundary condition at the both ends of the computational domain [−10, 5].

We compute the numerical solution until the final time t = 5 by the LDCU, A-MM, and A-
WLR schemes on a uniform mesh with ∆x = 1/80. We use the adaption constant C = 0.1 in the
A-WLR scheme. The numerical results at time t = 5 are presented in Figure 4.1 along with the
reference solution computed by the LDCU scheme on a much finer mesh with ∆x = 1/1600. On
the right panel of Figure 4.1, we zoom the obtained solutions at the interval [−1, 0], at which the
exact solution is smooth but has an oscillatory nature. As one can see, this part of the solution is
resolved much more accurately by the two adaptive schemes, especially by the A-WLR one.

Figure 4.1: Example 1: Density ρ computed by the LDCU, A-MM, and A-WLR schemes (left) and
zoom at x ∈ [−1, 0] (right).
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Example 2—Shock-Density Wave Interaction Problem. In the second example taken
from [41], we consider the shock-density wave interaction problem. The initial data,

(ρ, u, p)(x, 0) =


(27

7
,
4
√

35

9
,
31

3

)
, x < −4,

(1 + 0.2 sin(5x), 0, 1), x > −4,

are prescribed in the computational domain [−5, 15] subject to the free boundary conditions.
We compute the numerical solutions by the LDCU, A-MM, and A-WLR schemes on the uniform

mesh with ∆x = 1/40 until the final time t = 5. The A-WLR scheme is used with the adaption
constant C = 0.35. We present the obtained numerical results in Figure 4.2 together with the
reference solution computed by the LDCU scheme on a much finer mesh with ∆x = 1/400. It
can be clearly seen in Figure 4.2 (right) that both of the adaptive schemes produce more accurate
results compared to those obtained by the LDCU scheme. One can also observe that in this
example, unlike the previous one, the A-MM scheme achieves higher resolution of the smooth
parts of the solution compared with its A-WLR counterpart. This is attributed to a relatively
large value of C used in this example.

Figure 4.2: Example 2: Density ρ computed by the LDCU, A-MM, and A-WLR schemes (left) and
zoom at x ∈ [11.8, 13.6] (right).

Recall that one of the key points in the proposed WLR-based scheme adaption strategy is
tuning the adaption constant C. In [23], where a WLR-based adaptive artificial viscosity was
introduced and studied, the viscosity coefficient, which is directly related to C, was first adjusted
on a coarse mesh and then used for the high-resolution computations on finer meshes. However,
this strategy does not seem to be robust in the A-WLR scheme as the numerical results computed
by the A-WLR scheme may still have staircase-like structure in the areas where the coarse mesh
solution is smooth. In order to illustrate this, we use a slightly smaller adaption constant C = 0.2
and compute the results with C = 0.2 and C = 0.35 on the uniform meshes with ∆x = 1/40 and
1/200. We present the obtained densities (zoomed at x ∈ [9, 11]) in Figure 4.3, where one can see
that even though the solution computed on the coarse mesh with C = 0.2 is smooth, it develops
clear staircase-like structures when the mesh is refined.

Example 3—Blast Wave Problem. In the last 1-D example, we consider the strong shocks
interaction problem from [48], which is considered on the interval [0, 1] with the solid wall boundary
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Figure 4.3: Example 2: Density ρ computed by the A-WLR scheme with C = 0.2 and 0.35 on a coarse
(left) and fine (right) meshes. Zoom at x ∈ [9, 11].

conditions at both ends and subject to the following initial conditions:

(ρ, u, p)(x, 0) =


(1, 0, 1000), x < 0.1,

(1, 0, 0.01), 0.1 ≤ x ≤ 0.9,

(1, 0, 100), x > 0.9.

We compute the numerical solutions until the final time t = 0.038 by the LDCU, A-MM, and
A-WLR (with the adaption constant C = 0.1) schemes on a uniform mesh with ∆x = 1/400 and
implement the LDCU scheme on a much finer grid with ∆x = 1/4000 to compute the reference
solution. The obtained results, presented in Figure 4.4, demonstrate that while the A-MM scheme
outperforms the LDCU one, the A-WLR results are even more accurate and the A-WLR scheme
is capable of achieving a superb resolution of the contact wave located at about x = 0.6. It is
well-known that this contact wave is the one, which is hardest to get sharply resolved, and the
A-WLR scheme is, to best of our knowledge, the first Riemann-problem solver-free scheme that
can achieve this goal.

Figure 4.4: Example 3: Density ρ computed by the LDCU, A-MM, and A-WLR schemes (left) and
zoom at x ∈ [0.55, 0.85].
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4.2 Two-Dimensional Examples

Example 4—2-D Riemann Problem. In the first 2-D example, we consider Configuration 3
of the 2-D Riemann problems from [26] (see also [36,37,49]) with the initial conditions

(ρ, u, v, p)(x, y, 0) =


(1.5, 0, 0, 1.5), x > 1, y > 1,

(0.5323, 1.206, 0, 0.3), x < 1, y > 1,

(0.138, 1.206, 1.206, 0.029), x < 1, y < 1,

(0.5323, 0, 1.206, 0.3), x > 1, y < 1,

prescribed in the computational domain [0, 1.2]× [0, 1.2] subject to the free boundary conditions.
We compute the numerical solution until the final time t = 1 by the LDCU, A-MM, and A-

WLR (with the adaption constant C = 4) schemes on the uniform mesh with ∆x = ∆y = 3/2500
and present the obtained results in Figure 4.5, where one can see that both the A-MM and A-WLR
schemes outperform the LDCU scheme in capturing a sideband instability of the jet in the zones
of strong along-jet velocity shear and the instability along the jets neck.

Figure 4.5: Example 4: Density ρ computed by the LDCU (left), A-MM (middle), and A-WLR (right)
schemes.

In Figure 4.6, we show the regions which have been detected as “rough” by the SIs at the
final time. We first indicate (in the left and middle panels) the regions in which the MM-based SI
detected large x- and y-directional derivatives, respectively, and where the overcompressive SBM
directional limiters have been used. In the right panel, we show the “rough” regions indicated by
the WLR-based SI. As one can see, when the A-WLR scheme is used, a sharper SBM limiter is
implemented only in a small part of the computational domain, mostly around the shocks.

Example 5—Implosion Problem. In this example, we consider the implosion problem taken
from [31]. The initial conditions,

(ρ, u, v, p)(x, y, 0) =

{
(0.125, 0, 0, 0.14), |x|+ |y| < 0.15,

(1, 0, 0, 1), otherwise,
‘

are prescribed in [0, 0.5]× [0, 0.5] with the solid wall boundary conditions imposed at all of the four
sides. This example was designed to test the amount of numerical diffusion present in different
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Figure 4.6: Example 4: Areas detected as having large x- (left) and y-derivatives (middle) by the
MM-based SI and the “rough” areas detected by the WLR-based SI (right).

schemes as there is a jet forming near the origin and propagating along the diagonal y = x
direction, and schemes containing large numerical diffusion may not resolve the jet at all or the
jet propagation velocity may be affected by the numerical diffusion.

We compute the numerical solution until the final time t = 2.5 by the LDCU, A-MM, and A-
WLR (with the adaption constant C = 5) schemes on the uniform mesh with ∆x = ∆y = 1/2000
and present the obtained numerical results in Figure 4.7. As one can observe, while the jet is
generated by all of the studied schemes, it propagates much further in the diagonal direction when
the solution is computed by one of the adaptive schemes. In fact, the A-MM scheme seems to
contain even smaller amount of numerical diffusion than the A-WLR one. This can be confirmed
by the results presented in Figure 4.8, where we see that the “rough” areas detected at the final
time by the A-WLR scheme are concentrated along the shock waves only. This means that the A-
WLR scheme uses the overcompressive SBM limiter in a smaller part of the computational domain
compared with the A-MM scheme. It is worth noting that the A-WLR scheme can be made less
dissipative by decreasing the adaption constant C, but it might be difficult to tune C in this example
as for smaller values of C the A-WLR scheme may produce reasonably sharp results on a coarse
mesh, but it may develop severe instabilities when the mesh is refined to ∆x = ∆y = 1/2000.

Remark 4.1 The solution of the studied initial-boundary value problem is symmetric with respect
to the axis y = x, but this symmetry may be destroyed by the roundoff errors when the solution
is computed by the studied low-dissipation schemes. In order to prevent the loss of symmetry, we
have used a very simple strategy introduced in [46]: upon completion of each time evolution step,

we replace the computed values U j, k with Ûj,k, where

ρ̂j,k :=
ρj,k + ρk,j

2
, (ρ̂u)j,k :=

(ρu)j,k + (ρv)k,j
2

, (ρ̂v)j,k :=
(ρv)j,k + (ρu)k,j

2
, Êj,k :=

Ej,k +Ek,j

2
,

for all j, k. For more sophisticated symmetry enforcement techniques, we refer the reader to,
e.g., [5, 6, 8, 45].

Example 6—RT Instability. In the last example taken from [38], we investigate the RT
instability, which is a physical phenomenon occurring when a layer of heavier fluid is placed on
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Figure 4.7: Example 5: Density ρ computed by the LDCU (left), A-MM (middle), and A-WLR (right)
schemes.

Figure 4.8: Example 5: Areas detected as having large x- (left) and y-derivatives (middle) by the
MM-based SI and the “rough” areas detected by the WLR-based SI (right).

top of a layer of lighter fluid. To this end, we first modify the 2-D Euler equations of gas dynamics
(1.2), (3.2)–(3.3) by adding the gravitational source terms acting in the positive direction of the
y-axis into the RHS of the system:

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = ρ,

Et + [u(E + p)]x + [v(E + p)]y = ρv,

and then use the following initial conditions:

(ρ, u, v, p)(x, y, 0) =

{
(2, 0,−0.025c cos(8πx), 2y + 1), y < 0.5,

(1, 0,−0.025c cos(8πx), y + 1.5), otherwise,

where c :=
√
γp/ρ is the speed of sound. The solid wall boundary conditions are imposed at x = 0

and x = 0.25, and the following Dirichlet boundary conditions are specified at the top and bottom
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boundaries:

(ρ, u, v, p)(x, 1, t) = (1, 0, 0, 2.5), (ρ, u, v, p)(x, 0, t) = (2, 0, 0, 1).

We compute the numerical solution until the final time t = 2.95 by the LDCU, A-MM, and A-
WLR (with the adaption constant C = 3) schemes on the uniform mesh with ∆x = ∆y = 1/1024
in the computational domain [0, 0.25] × [0, 1] and then present the numerical results obtained at
the times t = 1.95 and 2.95 in Figure 4.9. As one can see, the A-MM and A-WLR schemes resolve
more small structures than the LDCU scheme, which again demonstrates that using a sharper
SBM limiter can produce sharper numerical results. As in the previous examples, one can observe
that the A-MM scheme uses the overcompressive SBM limiter in a larger number of cells compared
with the A-WLR scheme; see Figure 4.10, where the indicated “rough” areas are plotted.

Figure 4.9: Example 6: Density ρ computed by the LDCU (left), A-MM (middle), and A-WLR (right)
schemes at t = 1.95 (top row) and 2.95 (bottom row).
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Figure 4.10: Example 6: Areas detected as having large x- (left) and y-derivatives (middle) by the
MM-based SI and the “rough” areas detected by the WLR-based SI (right) at t = 1.95 (top row) and
2.95 (bottom row).

Remark 4.2 In this example, the solution is symmetric with respect to the vertical axis x = 0.125.
In order to enforce this symmetry, we have applied the strategy from [46]: upon completion of each

time evolution step, we replace the computed cell averages U j,k with Ûj,k, where

ρ̂j,k =
ρj,k + ρM−j,k

2
, (ρ̂u)j,k =

(ρu)j,k − (ρu)M−j,k
2

,

(ρ̂v)j,k =
(ρv)j,k + (ρv)M−j,k

2
, Êj,k =

Ej,k +EM−j,k

2
,

for all j = 1, . . . ,M and for all k. Alternative symmetry enforcement techniques can be found in,
e.g., [5, 6, 8, 45].
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5 Conclusion

In this paper, we have introduced new second-order adaptive low-dissipation central-upwind
schemes for the one- (1-D) and two-dimensional (2-D) hyperbolic systems of conservation laws.
The new adaptive schemes are based on the recently proposed low-dissipation central-upwind
(LDCU) fluxes and two smoothness indicators (SIs) (the minmod (MM)- and weak local residual
(WLR)-based ones) used to automatically detect “rough” areas of the computed solutions. We
then use the overcompressive SBM limiters in the “rough” areas and the dissipative Minmod2
limiters elsewhere to achieve higher resolution of the computed shocks and contact discontinues
and, at the same time, to avoid the staircase-like overcompressed structures in the computed re-
sults. We have applied the developed adaptive schemes to the 1-D and 2-D Euler equations of
gas dynamics and the obtained numerical results clearly demonstrate that both of the adaptive
schemes outperform the original LDCU scheme.

We have also compared the performance of the two proposed adaptive schemes. It turns out
that even though the use of the WLR-based SI may be advantageous in some examples, this SI
relies on an adaption constant, which may be hard to tune: this affects the robustness of the
resulting adaptive scheme. The use of the MM-based SI, on the other hand, leads to a robust
adaption strategy. Other SIs may be tested and they may turn out to be even more robust and
sharp, but we leave this study for the future work.
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A 2-D LCD-Based Piecewise Linear Reconstruction

In this appendix, we describe how to reconstruct the one-sided point values U±
j+ 1

2
,k

(the point values

U±
j,k+ 1

2

can be computed in a similar manner and we omit the details for the sake of brevity). To

this end, as in the 1-D case, we first introduce the local characteristic variables in the neighborhood
of (x, y) = (xj+ 1

2
, yk):

Γ`,k = R−1
j+ 1

2
,k
U `,k, ` = j − 1, j, j + 1, j + 2,

where the matrix Rj+ 1
2
,k is such that R−1

j+ 1
2
,k
Âj+ 1

2
,kRj+ 1

2
,k is diagonal and a locally linearized

Jacobian is Âj+ 1
2
,k := A

(
(U j,k +U j+1,k)/2

)
.

Equipped with the values Γj−1,k, Γj,k, Γj+1,k, and Γj+2,k, we compute

(Γx)j,k = φSBM
θ,τ

(
Γj+1,k − Γj,k

Γj,k − Γj−1,k

)
Γj,k − Γj−1,k

∆x
,

and

(Γx)j+1,k = φSBM
θ,τ

(
Γj+2,k − Γj+1,k

Γj+1,k − Γj,k

)
Γj+1,k − Γj,k

∆x
,
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where the SBM function, defined in (2.3), is applied in the component-wise manner. We then use
these slopes to evaluate

Γ−
j+ 1

2
,k

= Γj,k +
∆x

2
(Γx)j,k and Γ+

j+ 1
2
,k

= Γj+1,k −
∆x

2
(Γx)j+1,k,

and finally obtain the corresponding point values of U by

U±
j+ 1

2

= Rj+ 1
2
,kΓ
±
j+ 1

2
,k
.

Remark A.1 The matrices Rj+ 1
2
,k and R−1

j+ 1
2
,k

for the 2-D Euler equation of gas dynamics (3.2)–

(3.3) can be found in [3, Appendix C].
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