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Abstract In this paper, we introduce the local characteristic decomposition based
central-upwind (LCD-CU) scheme for compressible multifluids. The scheme is
implemented within the hybrid multifluid algorithm from [A. Chertock, S. Chu,
and A. Kurganov, J. Sci. Comput, 89(2021), Paper No. 48], according to which
we use the level set method to track the position of material interfaces and replace
the conservative compressible Euler equations with the pressure-based nonconserva-
tive ones in the vicinities of the interfaces. The LCD-CU scheme is used away from
the interfaces and this helps to reduce the numerical dissipation in these areas. At
the interfaces, we still use the path-conservative central-upwind scheme designed to
accurately solve nonconservative hyperbolic systems. This leads to a substantially
higher resolution, especially in the two-dimensional case.

Keywords Path-conservative scheme · Compressible multifluids · Local
characteristic decomposition based central-upwind scheme · Hybrid algorithm

1 Introduction

This paper focuses on the development of a new numerical method for compressible
multifluids, which are assumed to be immiscible. The governing equations in the
two-dimensional (2-D) case read as
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ρt + (ρu)x + (ρv)y = 0, (1)

(ρu)t + (ρu2 + p)x + (ρuv)y = 0, (2)

(ρv)t + (ρuv)x + (ρv2 + p)y = 0, (3)

Et + [u(E + p)]x + [v(E + p)]y = 0, (4)

where x and y are spatial variables, t is time, and ρ(x, y, t), u(x, y, t), v(x, y, t),
p(x, y, t), and E(x, y, t) are the density, x- and y-velocities, pressure, and total
energy, respectively.The system is completed through the following equations of
state (EOS) for each of the fluid components:

p = (γ − 1)
[
E − ρ

2
(u2 + v2)

]
− γ p∞, (5)

where γ represents the specific heat ratio and p∞ is the stiffness parameter, with
p∞ = 0 corresponding to the ideal gas case. In this paper, we consider a multifluid
problem with two components and assume that γ = γI , p∞ = p∞,I and γ = γI I ,
p∞ = p∞,I I for the first and second fluid components, respectively.

The fluid components can be identified, for instance, by the level-set function φ
whose zero level-set defines the interface between the fluid components; see [1, 3,
10, 16]. The function φ propagates with the fluid velocity and satisfies the following
conservative equation:

(ρφ)t + (ρuφ)x + (ρvφ)y = 0. (6)

It is well-known that even when the initial data are smooth, solutions of (1)–
(6) can produce complex nonsmooth wave patterns including shocks, rarefactions,
and contact discontinuities. This makes it quite challenging to develop accurate and
reliable numerical schemes for (1)–(6). A library of finite-volume (FV) methods
for the 2-D hyperbolic systems of conservation laws have been proposed; see, e.g.,
the monographs [12, 15] and references therein. However, applying the single fluid
FV methods to the multifluid system (1)–(6) may lead to significant pressure and
velocity oscillations, which originate near the material interface and then typically
spread all over the computational domain; see, e.g., [3, 13]. This occurs since in the
cells where the interface is located, the fluids are artificially mixed, and the mixed
cell average values often are nonphysical. Therefore, one needs to design special
multifluid algorithms as it was done in, e.g., [1, 2, 4, 6, 8–10, 18–20].

In this paper, we construct a new numerical method for (1)–(6), which is, in fact,
an improved version of the hybrid multifluid algorithm recently proposed in [8]. The
key idea in [8] is to detect the vicinities of material interfaces and then to replace the
conservative energy Eq. (4) there with a nonconservative evolution equation for the
pressure p (which, unlike the total energy E , remains continuous across the contact
waves at the material interfaces):

pt + (up)x + (vp)y = − [(γ − 1)p + γ p∞] ux − [(γ − 1)p + γ p∞] vy . (7)
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The resulting nonconservative system (1)–(3), (5)–(7) is then solved using the path-
conservative central-upwind (PCCU) scheme introduced in [5]. Away from material
interfaces, the original conservative system (1)–(6) was solved in [8] using the CU
scheme from [14]. We now replace that CU scheme with the recently proposed
local characteristic decomposition based central-upwind (LCD-CU) scheme from
[7], which contains a substantially smaller amount of numerical dissipation and
typically achieves an enhanced resolution; see the numerical results for the single
fluid compressible Euler equations reported in [7, §5]. In this paper, we demonstrate
how the implementation of the LCD-CU scheme can enhance the resolution achieved
by the hybrid multifluid algorithm.

2 Hybrid Multifluid Algorithm

We follow the hybrid multifluid algorithm from [8]. Here, we briefly describe the
main steps of the algorithm and focus on the novel features of the method designed
in this paper.

Step 1. Given the set of discrete data for V = (ρ, u, v, p,φ)�, we determine the
location of thematerial interfaces,which are assumed to be in the immediate vicinities
of the FV cells in which φ changes sign (for the sake of simplicity, we use uniform
Cartesian meshes).

Step 2. In the vicinities of the interfaces detected in Step 1, we discretize the non-
conservative system (1)–(3), (5)–(7) using the second-order PCCU scheme.

Step 3. Away from the detected interface areas, we discretize the conservative system
(1)–(6). Unlike the method from [8], where (1)–(6) was discretized using the CU
scheme from [14], we now use the LCD-CU scheme, which was recently proposed
in [7] but implemented here in a slightly different way since we use an alternative
piecewise linear reconstruction procedure. As in [7], we perform the reconstruction
in the local characteristic variable, but in order to switch to them, we now use the
primitive variables V rather than the conservative ones (ρ, ρu, ρv, E, ρφ)�. This is
done as follows. First, we rewrite (1)–(6) in terms of V :

V t + AV x + BV y = 0, (8)

where

A =

⎛
⎜⎜⎜⎜⎝

u ρ 0 0 0
0 u 0 1

ρ
0

0 0 u 0 0
0 γ(p + p∞) 0 u 0
0 0 0 0 u

⎞
⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎝

v 0 ρ 0 0
0 v 0 0 0
0 0 v 1

ρ
0

0 0 γ(p + p∞) v 0
0 0 0 0 v

⎞
⎟⎟⎟⎟⎠
. (9)
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We then locally linearize A and B at each x- and y-cell interfaces and obtain the
linearized matrices

Â =

⎛
⎜⎜⎜⎜⎝

û ρ̂ 0 0 0
0 û 0 1

ρ̂
0

0 0 u 0 0
0 γ̂( p̂ + p̂∞) 0 û 0
0 0 0 0 û

⎞
⎟⎟⎟⎟⎠

and B̂ =

⎛
⎜⎜⎜⎜⎝

v 0 ρ 0 0
0 v̂ 0 0 0
0 0 v̂ 1

ρ̂
0

0 0 γ̂( p̂ + p̂∞) v̂ 0
0 0 0 0 v̂

⎞
⎟⎟⎟⎟⎠
, (10)

where ρ̂ = √
ρLρR , û =

√
ρLuL+√

ρRuR√
ρL+√

ρR
, v̂ =

√
ρLvL+√

ρRvR√
ρL+√

ρR
, p̂ =

√
ρL pL+√

ρR pR√
ρL+√

ρR
, γ̂ =

√
ρLγL+√

ρRγR√
ρL+√

ρR
, and p̂∞ =

√
ρL (p∞)L+√

ρR(p∞)R√
ρL+√

ρR
, where (·)L and (·)R stand for the left-

and right-sided point values at the given cell interface. We then use the eigenvectors
of the obtained constant matrices Â and B̂ to form the (locally defined) matrices
R. We then introduce the local characteristic variables Γ := R−1V at every cell
interface (more precisely, in two cells on the left and two cells on the right of the
interface), perform the piecewise linear reconstruction in Γ (in our numerical exper-
iments, we have used the Minmod2 limiter, see, e.g., [12, 15], which determines the
slopes of Γ at each cell adjusted to the material interface), use the obtained recon-
structions to evaluate the point values of Γ at the cell interfaces, and then compute
the corresponding point values of V using V = RΓ .

Remark 1 Note that the nonconservative system (8)–(9) is different from (1)–(3),
(5)–(7) and that it is used for the local characteristic decomposition only—not for
the time evolution.

Remark 2 We perform a piecewise linear reconstruction in the local characteristic
variables since when we implement the LCD-CU scheme, these variables are avail-
able and it is well-known that reconstructing local characteristic variables typically
leads to smaller or no oscillations.

3 Numerical Examples

In this section, we test the proposed second-order scheme on several numerical
examples and compare the obtained results with those computed by the CU and
mixed-order A-WENO schemes from [8] (this scheme is based on the fifth-order
WENO-Z interpolation monotonized with the help of the second-order accurate
piecewise linear reconstruction). In the rest of this section, we will refer to the
proposed scheme as to LCD-CU scheme. In all of the examples below, we have
solved the ODE systems using the three-stage third-order strong stability preserving
Runge-Kutta method (see, e.g., [11]) with CFL number 0.3.

Example 1 (Water-Air Model Using the Stiff Equation of State) In the first exam-
ple taken from [3], we consider a gas-liquid multifluid system, in which the liquid
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Fig. 1 Example 1: Density ρ(left) and zoom at [0.79, 0.86] (right)

component is modeled by the stiff EOS (5) with p∞ � 1. The initial conditions
correspond to a severe water-air shock tube problem and given by

(ρ, u, p; γ, p∞)(x, 0) =
{
(1000, 0, 109; 4.4, 6 · 108), x < 0.7,

(50, 0, 105; 1.4, 0), x > 0.7.

We compute the numerical solution until the final time t = 0.00025 on a uniform
mesh with 400 cells. In Fig. 1, we plot the solution computed by the CU, mixed-
order A-WENO, and LCD-CU schemes together with the corresponding reference
solutions computed by the LCD-CU scheme on a much finer mesh with 8000 cells.
As one can see, there is no oscillations in the numerical results and the density profile
obtained by the LCD-CU scheme is slightly sharper than the one computed by the
second-order CU and mixed-order A-WENO schemes; see zoom at the contact and
shock waves area in Fig. 1 (right).

Example 2 (Shock Hitting Helium Bubble) In the first 2-D example taken from [17],
we consider the system (1)–(6) subject to the following initial conditions:

(ρ, u, v, p; γ, p∞)(x, y, 0) =

⎧⎪⎨
⎪⎩

(4/29, 0, 0, 1; 5/3, 0), x2 + y2 ≤ 0.0625,

(4/3,−0.3535, 0, 1.5; 1.4, 0), x ≥ 0.75,

(1, 0, 0, 1; 1.4, 0), otherwise,

see [8, Fig. 3.6] for the sketch of the initial shock-bubble setting.

We compute the numerical results on the computational domain [−3, 1] ×
[−0.5, 0.5] by the second-order CU, second-order LCD-CU, and mixed-order A-
WENO schemes on the uniform 2000 × 500 spatial mesh. In Fig. 2, we illustrate the
results obtained at different time moments during the shock-bubble interaction pro-
cess. Notice that the bubble changes its shape and propagates to the left, but in order to
focus on the details of the bubble structure, we only zoom at [σ,σ + 1] × [−0.5, 0.5]
square area containing the bubble (σ is decreasing in time from –0.75 to –1.6). We
plot Schlieren images of the magnitude of the density gradient field |∇ρ|. To this
end, we have used the following shading function:
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Fig. 2 Example 2: Shock-Helium bubble interaction by the CU (left column), mixed-order A-
WENO (middle column), and LCD-CU (right column) schemes at t = 1, 2, and 3

exp

(
− K |∇ρ|

max(|∇ρ|)
)
, K = 80,

where the numerical density derivatives are computed using standard central
differencing.

As one can see from Fig. 2, the LCD-CU scheme can capture both the material
interface and small features of the solution in a sharper manner than the second-order
CU and mixed-order A-WENO schemes. The differences in the results computed by
the studied schemes become more pronounced at larger times.

Example 3 (Shock Hitting R22 Bubble) In the last example taken from [17], we
consider another shock-bubble interaction problem with the following initial condi-
tions:
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Fig. 3 Example 3: Shock-R22 bubble interaction by the CU (left column), mixed-order A-WENO
(middle column), and LCD-CU (right column) schemes at t = 1, 2, and 3

(ρ, u, v, p; γ, p∞)(x, y, 0) =

⎧
⎪⎨
⎪⎩

(3.1538, 0, 0, 1; 1.249, 0), x2 + y2 ≤ 0.0625,

(4/3,−0.3535, 0, 1.5; 1.4, 0), x ≥ 0.75,

(1, 0, 0, 1; 1.4, 0), otherwise.

We compute the numerical results on the same computational domain and meshes
as in Example 2 and plot the Schlieren images of the magnitude of the density
gradient field in Fig. 3. The numerical results show that the bubble changes its shape
and propagates to the left, and in order to focus on the details of the bubble structure,
we only zoom at [σ,σ + 1] × [−0.5, 0.5] square area containing the bubble (σ is
decreasing in time from –0.6 to –1.15). As one can see, the second-order LCD-
CU scheme produces sharper numerical results than both the second-order CU and
mixed-order A-WENO schemes.
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Table 1 Examples 1–3: CPU times consumed by the LCD-CUandmixed-orderA-WENOschemes
relative to the CPU time consumed by the CU scheme

Example 1 (%) Example 2 (%) Example 3 (%)

Mixed-order
A-WENO

282 297 280

LCD-CU 306 328 317

Remark 3 Wehavemeasured theCPU times consumed by the studied schemes. The
results obtained for Examples 1–3 are reported in Table1, where we show the CPU
time consumption of the second-order LCD-CU andmixed-order A-WENO schemes
relative to the second-order CU scheme. As one can see, the times consumed by the
second-order LCD-CU and mixed-order A-WENO schemes are around three times
larger than times consumed by the second-order CU schemes in both 1-D and 2-D
cases. It should be pointed out that even though the proposed LCD-CU scheme is
more computationally expensive comparedwith itsCUpredecessor, the improvement
in the achieved resolution is quite significant. If one tries to alternatively use the CU
scheme on a finer mesh, the memory use may become an issue. We would also like
to stress that the LCD procedure can be easily parallelized to improve the efficiency
of the proposed LCD-CU scheme.
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