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Abstract

We present counter-intuitive examples of a viscous regularizations of a two-dimensional
strictly hyperbolic system of conservation laws. The regularizations are obtained using two
different viscosity matrices. While for both of the constructed “viscous” systems waves
propagating in either x- or y-directions are stable, oblique waves may be linearly unstable.
Numerical simulations fully corroborate these analytical results. To the best of our knowl-
edge, this is the first nontrivial result related to the multidimensional Gelfand problem. Our
conjectures provide direct answer to Gelfand’s problem both in one- and multi-dimensional
cases.
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1 Introduction

Hyperbolic systems of conservation laws and their viscous regularizations pertaining to the natural
sciences are among the most important partial differential equations (PDEs) and invariably stir the
interest of mathematicians of all walks. Stability of solutions and their dependence on parameters
are among the basic and most important questions that need to be investigated. During the
height of the Cold War, Soviet-American mathematician I. M. Gelfand published a paper with
an unassuming title “Some problems in the theory of quasi-linear equations” [5]. It was the
time when high-temperature physics, nuclear reactions, and powerful explosions became the hotly
pursued and studied areas as tools of political wrestling. Being inspired by the mathematical
problems relevant to the new realms of physics, with his (un)usual insight and tour de force,
Gelfand formulated and posted a few fundamental problems in the theory of PDEs.

Among them, one of the most intriguing questions relates to the role and structure of dissipa-
tive, “viscous” effects, which are usually present as higher (usually second) order partial derivative
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terms in viscous regularizations of the hyperbolic conservation laws. Being typically small, those
dissipative effects become important near shock waves or areas with sharp spatial gradients. The
question asked by Gelfand, sounds deceptively simple: What structure of dissipative terms will
ensure the convergence of solutions of the regularized hyperbolic conservation systems to those of
the corresponding inviscid ones?

We consider strictly hyperbolic systems, whose Jacobians have distinct real eigenvalues. For
those systems an (obvious) requirement for the viscosity matrix is to be positive definitive, that
is, “viscous”. Of course, the diagonal viscosity matrices are the simplest, and correspond to the
viscous terms in the Navier-Stokes equations of fluid motion. A diagonal viscous matrix with
positive entries was used by Bianchini and Bressan [1] to prove the global existence and unique-
ness for one-dimensional (1-D) strictly hyperbolic systems via the vanishing viscosity method.
Nevertheless, Majda and Pego [9] discovered a remarkable phenomenon: viscous shocks for 1-D
systems of convection-diffusion systems with strictly hyperbolic convective term and small and
positive definitive, but non-diagonal viscosity matrix may not converge to the shock waves of the
corresponding inviscid system. Moreover, such system may be linearly unstable. Those insta-
bility examples have direct pertinence to the modeling of natural phenomena in larger, “macro”
scales when both viscous and convective terms are not expected to be simply diagonal. Later,
Kliakhandler [8] found the same phenomenon for specific fluid mechanics problems.

In [9], Majda and Pego considered the simplest 1-D linear system with constant coefficients,

ut + Aux = Cuxx, (1.1) 1.1

where x is a spatial variable, t is time, u ∈ RN is the vector of unknowns (N ≥ 2), the matrix
A has distinct real eigenvalues, and the matrix C has real positive eigenvalues. Even though one
may expect the solutions of (1.1) to be smooth and stable, Majda and Pego observed that the
simplest solution, u(x, t) = eikx+ωtû with û = Const and the linear stability operator Ω(k) :=
−ikA − k2C may have nontrivial behavior. It is obvious that for small k (the so-called long-
wavelength solutions), the convective part is dominating and, in particular, the wave speeds are
defined by the eigenvalues of A. This is similar to the case of a scalar convection-diffusion equation.
However, unlike the scalar case, the stability of the system (1.1) is ensured by the negativity of
the real parts of the eigenvalues of the matrix Ω, which is not guaranteed by the positivity of
the eigenvalues of C, which dominates the eigenvalue problem for large k only. The behavior of
the eigenvalues of Ω(k) for small k may be understood by the perturbative analysis of the simple
“wavy” eigenvalues of the matrix A. Those perturbative terms include interplay between the
matrices A and C. It turns out that Ω may have eigenvalues with positive real part for small
wavenumbers k so that the corresponding solutions of (1.1) will grow indefinitely in time, contrary
to the “naive” expectations. This may happen when C is positive definitive but not diagonal.
We stress that the non-diagonality of both the advective matrix A and the viscosity matrix C is
critical for the linear instability.

Concerning the multidimensional systems, very little has been known about the influence of
viscous terms on stability and convergence. In this paper, we discover the two-dimensional (2-D)
phenomenon that extends, in a certain sense, the 1-D results of Majda and Pego [9]. To this end,
we consider the 2-D extension of (1.1),

ut + Aux +Buy = Cuxx +Duyy, (1.2) 1.2

where the advective matrices A and B have distinct real eigenvalues and the viscosity matrices
C and D are positive definite, and show that viscous regularizations of 2-D strictly hyperbolic
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systems may be stable in the directions of both x- and y-axes, but yet some oblique waves may be
unstable. We present an explicit example of such system (linearized shallow water equations), for
which we perform linear stability analysis. We also conduct numerical simulations for this unstable
linear system and also for nonlinear regularized Saint-Venant system. Our numerical results fully
corroborate the obtained linear stability results. Finally, we conjecture on the stability of the
eigenvalue problem and point to the obvious three-dimensional (3-D) extensions of our results.

2 Two-Dimensional Saint-Venant Systems

The Saint-Venant system introduced in [4] is one of the most commonly used models of shallow
water flows in rivers or coastal areas.

In the case of flat bottom topography, the 2-D Saint-Venant system reads as

ht + qx + py = 0,

qt +

(
q2

h
+
g

2
h2
)
x

+
(pq
h

)
y

= 0,

pt +
(pq
h

)
x

+

(
p2

h
+
g

2
h2
)
y

= 0.

(2.1) 2.1

Here, h is the water depth, u and v are the x- and y-velocities, respectively, q = hu and p = hv
are the corresponding discharges, and g is the acceleration due to gravity.

The 2-D Saint-Venant system (2.1) can be linearized about a “lake-at-rest” steady state
h(x, y, t) ≡ h0 = Const, u(x, y, t) = v(x, y, t) ≡ 0. To this end, we introduce the perturba-
tion variables h′, q′, and p′ such that h = h0 + h′, q = q′, and p = p′, and substitute them into
(2.1) to obtain 

h′t + q′x + p′y = 0,

q′t +

(
(q′)2

h0 + h′
+
g

2
(h0 + h′)2

)
x

+

(
p′q′

h0 + h′

)
y

= 0,

p′t +

(
p′q′

h0 + h′

)
x

+

(
(p′)2

h0 + h′
+
g

2
(h0 + h′)2

)
y

= 0.

(2.2) 2.2

We then neglect the nonlinear terms in (2.2) and end up with the 2-D linearized Saint-Venant
system: 

h′t + q′x + p′y = 0,

q′t + gh0h
′
x = 0,

p′t + gh0h
′
y = 0,

which can be rewritten in the vector form

ut + Aux +Buy = 0, (2.3) 2.3

with

u =


h′

q′

p′

 , A =


0 1 0

gh0 0 0

0 0 0

 , B =


0 0 1

0 0 0

gh0 0 0

 . (2.4) 2.4
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3 Viscous Approximations of the Saint-Venant Systems

〈sec3〉We now add the viscosity terms to the right-hand sides (RHS) of (2.3)–(2.4) and study the stability
of the resulting viscous linearized shallow water equations, which read as (1.2), (2.4). We consider
the following specific viscosity matrices C and D:

C =


ε 0 0

0 ε 0

0 0 ε

 , D =


ε 0 0

0 ε 0

∆ ∆ ε

 , (3.1) 3.1

where ε > 0 and ∆ are constants.

We now analyze the stability of the linearized viscous shallow water equations (1.2), (2.4),
(3.1). To this end, we take the following ansatz:

h′

q′

p′

 =


ĥ′1

q̂ ′1

p̂ ′1

 e
ωt+ik

(
γx+
√

1−γ2y
)
, (3.2) 3.2

where ω is a wave magnitude, k is its frequency, γ stands for a spatial direction of the wave, and
(ĥ′1, q̂

′
1, p̂

′
1)
> is a constant nonzero vector. Substituting (3.2) into (1.2), (2.4), (3.1) results in

Eu = 0,

where

E =


ω + εk2γ2 + εk2(1− γ2) ikγ ik

√
1− γ2

ikγgh0 ω + εk2γ2 + εk2(1− γ2) 0

ik
√

1− γ2gh0 + ∆k2(1− γ2) ∆k2(1− γ2) ω + εk2γ2 + εk2(1− γ2)

 .

Therefore, u is an eigenvector that corresponds to the zero eigenvalue if and only if the following
characteristic equation is satisfied:

ε3k6 −∆k3(1− γ2)
3
2 (gh0kγ + iω) + εk2(gh0k

2 − i∆k3(1− γ2)
3
2 + 3ω2) + 3ε2k4ω

+ (gh0k
2 + ω2)ω = 0.

Its solution ω depends on the wave number k and the parameters ε, g, h0, and ∆. Clearly, if ω is
positive for some k, then the system (1.2), (2.4), (3.1) is unstable.

Next, we take following parameter values: h0 = 1, g = 10, ∆ = 5, and γ = 1/2, and then plot
the function ω(k) for ε = 1 and ε = 5 in Figure 3.1. As one can see, when ε = 5, ω(k) ≤ 0 for
all k and thus the system is stable. However, when ε = 1, ω(k) > 0 for 0 < k . 2.3 with the
maximum value about 0.4 achieved at about k = 1.5. This means that ε = 1 corresponds to the
unstable regime.
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Figure 3.1: w as a function of k for ε = 1 (left) and ε = 5 (right).

4 Numerical Examples

In this section, we conduct several numerical experiments using a semi-discrete fifth-order finite-
difference alternative weighted essentially non-oscillatory (A-WENO) scheme described in [3, §3]
(see also [2, Appendix C]). The diffusion terms have been discretized using a standard six-order
finite-difference approximations of uxx and uyy. We have used the three-stage third-order strong
stability preserving (SSP) Runge-Kutta method (see, e.g., [6, 7]) for the temporal discetization.

In all of the numerical examples, periodic boundary conditions are imposed on the four sides
of the computational domain [−30, 30] × [−30, 30], which corresponds to 15 wavelengths in both
the x- and y-directions. We compute the numerical solutions until a very large final time t = 250
on a uniform mesh with ∆x = ∆y = 0.2.

4.1 Linear Case

We first conduct numerical experiments for the viscous linearized shallow water equations (1.2),
(2.4), (3.1) subject to the following initial conditions:

h′(x, y, 0) =

10−2
(

1 +
1

40
e2(1−x

2−y2)
)

if x2 + y2 < 1,

10−2, otherwise,
q′(x, y, 0) = p′(x, y, 0) ≡ 0,

which are a perturbation of the steady state (h′, q′, p′) ≡ (10−2, 0, 0).
In Figures 4.1 and 4.2, we present the computed solutions for ε = 5 and 1, respectively. One

can clearly see that the obtained numerical solutions support the analytical results in §3. Namely,
when ε = 5, the solution is stable and the small initial perturbation decays in time as expected;
see Figure 4.1, where we plot the computed solution at times t = 0, 50, 100, and 150. When ε = 1,
the solution is unstable: It creates large magnitude wave structures in the oblique direction that
corresponds to γ = 1/2, and the magnitude of these waves grows indefinitely in time; see Figure
4.2, where we plot the computed solution at times t = 0, 50, 100, 150, 200, and 250.

4.2 Nonlinear Case

In this section, we conduct numerical experiments for the nonlinear viscous Saint-Venant system

ut + f(U)x + g(u)y = Cuxx +Duyy.
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Figure 4.1: Linear case: h computed with ε = 5 (stable regime) at different times.

where

u =


h

q

p

 , f(u) =


q

q2

h
+
g

2
h2

pq

h

 , g(u) =


p
pq

h
p2

h
+
g

2
h2

 ,

and the matrices C and D are given by (3.1). We take the following initial conditions:

h(x, y, 0) =

1 +
1

4000
e2(1−x

2−y2) if x2 + y2 < 1,

1, otherwise,
q(x, y, 0) = p(x, y, 0) ≡ 0,

which are a small perturbation of the steady state (h, q, p) ≡ (1, 0, 0).

We present the computed solutions in Figures 4.3 and 4.4 for ε = 5 and 1, respectively. As one
can see, when ε = 5 the solution of the nonlinear system is stable and, like in the linear case, the
initial perturbation decays in time; see Figure 4.3, where we plot the computed solution at times
t = 0, 50, 100, and 150. The solution behavior in the unstable (ε = 1) regime is, however, different
from the linear case. While the solution develops large magnitude waves in the same oblique
direction corresponding to γ = 1/2, the magnitude of these waves does not increase beyond 2 and
the solution structure evolves in a rather complicated nonlinear manner; see Figure 4.4, where we
plot the computed solution at times t = 0, 50, 100, 150, 200, and 250.
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Figure 4.2: Same as in Figure 4.1, but for ε = 1 (unstable regime).

5 Stability Conjectures

In this section, we discuss a general question on conditions on the matrices A, B, C, and D for the
stability of the system (1.2). Those ideas are prompted by simple “combinatorial” observations
of 1-D systems in the x- and y-directions, as well as by the examples of unstable oblique waves
above. We surmize that linear operators, stemming from all combinations of convective terms in
all directions with viscous terms in all directions, should be stable for all wavenumbers.

〈con51〉Conjecture 5.1 If the eigenvalues of the stability operators Ω1(k) = −ikA − k2C, Ω2(k) =
−ikA − k2D, Ω3(k) = −ikB − k2C, and Ω4(k) = −ikB − k2D are negative for all k, then the
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Figure 4.3: Nonlinear case: h computed with ε = 5 (stable regime) at different times.

system (1.2) is stable.

Remark 5.2 In fact, Conjecture 5.1 suggests to check the eigenvalues of four possible combina-
tions −ik(·)− k2(·) of all convective and viscous matrices.

Before presenting the second conjecture, we will make a few simple observations. We first
consider a general eigenvalue problem prompted by the stability considerations. The eigenvalues
of A are the roots of the characteristic polynomial of degree N , PN(λ) =

∑N
i=0(−1)iriλ

N−i with
r0 = 1, r1 = tr(A), and rN = det(A). In fact, the coefficients ri for i = 1, . . . , N are the sum of
the i-rowed principal minors of A. In particular, for N = 2 and N = 3, we have

P2(λ) = λ2 − tr(A)λ+ det(A) = λ2 − (a11 + a22)λ+ (a11a22 − a12a21), P ′2(λ) = 2λ− tr(A),

P3(λ) = λ3 − tr(A)λ2 +
( 3∑
i=1

Mii

)
λ− det(A), P ′3(λ) = 3λ2 − 2 tr(A)λ+

3∑
i=1

Mii.

Here, Mij denotes the (i, j) minor of A, and
∑3

i=1Mii = (a11a22 − a12a21) + (a11a33 − a13a31) +
(a22a33 − a23a32).

Let us denote by λ`, ` = 1, . . . , N the eigenvalues of A and consider a slightly perturbed
matrix A+ δC, where δ is a small parameter. Its eigenvalues are λ` + δλ`,1 + δ2λ`,2 + . . . and the
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Figure 4.4: Same as in Figure 4.3, but for ε = 1 (unstable regime).

characteristic equation can be written as

P̃N(λ`; δ) :=
N∑
i=0

(−1)i(ri + δri,1 + δ2ri,2 + . . .)(λ` + δλ`,1 + δ2λ`,2 + . . .)N−i = 0 (5.1) 5.1

with the coefficients on the left-hand side being slightly perturbed sums of all principal minors of
A+ δC. Differentiating (5.1) with respect to δ and substituting δ = 0 results in

∂P̃N
∂δ

(δ = 0) = λ`,1P
′
N(λ`) +

N∑
i=1

(−1)iri,1λ
N−i
` = 0,
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which implies that the linear correction of the eigenvalue λ`, which may influence the sign of the
`-th eigenvalue of the perturbed matrix for small δ, is

λ`,1 = − 1

P ′N(λ`)

N∑
i=1

(−1)iri,1λ
N−i
` , ` = 1, . . . , N. (5.2) 5.2

Here, ri,1 are the sum of the i-rowed principal minors with all combinations of elements where
precisely one element of matrix A is replaced by elements of matrix C (first-order correction) so
that λ`,1 is a linear function relative to the elements of matrix C. Notice that P ′N(λ`) 6= 0 as long
as the eigenvalues of A are distinct.

In particular, for N = 2, the first correction (5.2) assumes a simple elegant form:

λ`,1 =
(c11 + c22)λ` + a12c21 − a22c11 + a21c12 − a11c22

2λ` − (a11 + a22)
, ` = 1, 2.

For N = 3, (5.2) takes the following (a bit cumbersome) form:

λ`,1 =

tr(C)λ2` − r2,1λ` +
3∑
i=1

3∑
j=1

(−1)i+jcijMij

3λ2` − 2 tr(A)λ` +
3∑
i=1

Mii

, ` = 1, 2, 3,

where

r2,1 = a22c33+a33c22−a23c32−a32c23+a11c33+a33c11−a13c31−a31c13+a11c22+a22c11−a12c21−a21c12

We now use (5.2) and introduce the second conjecture, which relates to a more algebraic
reduction of Conjecture 5.1.

〈con53〉Conjecture 5.3 Let the matrix A has distinct real eigenvalues λ`, ` = 1, . . . , N , and the matrix
C has real positive eigenvalues. Then, the linear operator Ω(k) = −ikA− k2C will have negative
eigenvalues if and only if the quantities λ`,1 defined in (5.2) are negative for all ` = 1, . . . , N .

We stress that values λ`,1 control the first correction of long-wavelength expansion for small
k: −iλ`k + λ`,1k

2. The importance of Conjecture 5.3 is that it gives a simple algebraic stability
criterion based on the elements of matrices A and C for all k. Both Conjectures 5.1 and 5.3 may
be viewed as a direct and simple solution of the multidimensional Gelfand problem, and they are
inspired by the remarkable paper by Majda and Pego [9].

6 Conclusion

We have demonstrated the counter-intuitive extension of Majda-Pego instability for 2-D systems,
both analytically and through direct numerical simulations. To the best of our knowledge, this is
the first nontrivial result for the Gelfand problem in the multidimensional case.

While we have presented examples of unstable 2-D system with viscous terms, it is rather easy
to construct similar examples in the 3-D case: as in the 2-D case, both advective and viscous
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matrices should be non-diagonal, all of the waves propagating in either x-, y-, or z-direction will
be stable, yet some oblique waves will be unstable.

We hope that our examples will stimulate the elucidation of peculiar role of viscous effects in
the broad spectrum of natural phenomena, including fluid mechanics. We have proposed the con-
jectures that give direct assessment of stability of multidimensional convection-diffusion systems
and resolve the Gelfand problem. One can also generalize Conjectures 5.1 and 5.3 for the 3-D
systems: In order to establish the stability criteria, one has to study to the eigenvalues of nine
linear operators −ik(·)− k2(·) for possible combination of all convective and viscous matrices.
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and the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material
Design (No. 2019B030301001).
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