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Abstract

We develop new more efficient A-WENO schemes for both hyperbolic systems of con-
servation laws and nonconservative hyperbolic systems. The new schemes are very simple
modification of the existing A-WENO schemes: They are obtained by a more efficient eval-
uation of the high-order correction terms. We conduct several numerical experiments to
demonstrate the performance of the introduced schemes.
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1 Introduction

This paper is focused on the development of new more efficient fifth-order finite-difference (FD)
alternative weighted essentially non-oscillatory scheme (A-WENO) schemes for both conservative
and nonconservative hyperbolic systems of nonlinear PDEs.

In the one-dimensional (1-D) case, hyperbolic systems of conservation laws read as

Ut + F (U)x = 0, (1.1)

where x is the spatial variable, t is the time, U ∈ Rd is a vector of unknowns, F : Rd →
Rd is a nonlinear flux function. The A-WENO schemes for (1.1), introduced in [23] (also see
[11, 14, 18, 31, 32, 40–42]), employ finite-volume (FV) numerical fluxes without any flux splitting,
and use high-order correction terms to ensure a high-order spatial accuracy of the resulting scheme.
For instance, the original A-WENO scheme from [23] employs an upwind flux, the schemes in
[18, 31, 32, 40, 42] rely on the simplest—yet very robust—central (local Lax-Friedrichs, Rusanov)
flux or its adaptive version, and the schemes in [11, 14, 41] are based on central-upwind fluxes.
Examples of many other FV numerical fluxes can be found in, e.g., [22, 24,30,39].

In this paper, we focus on the computation of the high-order correction terms. In all of the
existing A-WENO schemes, these terms are computed using the point values of the flux function
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F (U). This requires the fluxes to be evaluated at every grid point at every time step. We propose
to use the already computed numerical fluxes instead of evaluating the flux function at the grid
points: This way one can save the computational time without losing accuracy or risking any
additional spurious oscillations.

The proposed modification can also be applied to the nonconservative hyperbolic systems,
which in the 1-D case read as

Ut + F (U)x = B(U )Ux, (1.2)

where B(U) ∈ Rd×d. The presence of the nonconservative products on the right-hand side (RHS)
of (1.2) introduces more challenges for studying (1.2) both theoretically and numerically. Weak
solutions of (1.2) can be understood in the sense of Borel measures as it was done in [16, 28, 29],
but not in the sense of distributions when U is discontinuous. The concept of Borel measure
solutions was utilized to develop path-conservative schemes. A wide of variety of path-conservative
methods have been introduced; see, e.g. [2–4,6–9,26,34,35,37] and references therein. Recently, the
second-order path-conservative central-upwind scheme from [8] has been extended to fifth order
of accuracy in the framework of A-WENO schemes; see, e.g., [12, 13]. In these schemes, we first
rewrite the system (1.2) in the following quasi-conservative form:

Ut +K(U)x = 0, (1.3)

where

K(U ) = F (U)−R(U), R(U) :=

x∫
x̂

B(U)Uξ(ξ, t) dξ,

and x̂ is an arbitrary number. High-order correction terms are then computed using the point val-
ues of the global fluxes K. As in the conservative case, the point values of K need to be computed
at every grid point at every time step. In this paper, we propose a more efficient alternative: to
use the already computed numerical flux values in the computation of the high-order correction
terms, which leads to new more efficient A-WENO schemes for nonconservative hyperbolic sys-
tems. The proposed A-WENO schemes are realized in the framework of flux globalization based
well-balanced (WB) path-conservative schemes, which were introduced in [26] and later applied
to a variety of shallow water models in [3, 4, 10].

The rest of the paper is organized as follows. In §2.1, we briefly describe the existing A-
WENO schemes and then in §2.2, we introduce new A-WENO schemes using an alternative, more
efficient way of computing the high-order correction terms. In §3.1, we describe flux globaliza-
tion based WB path-conservative A-WENO schemes, and then introduce new more efficient flux
globalization based WB path-conservative A-WENO schemes in §3.2. Finally, in §4, we test the
proposed schemes on a number of conservative and nonconservative examples. The obtained nu-
merical results demonstrate that the new A-WENO schemes are clearly more efficient than the
old ones, while neither the accuracy nor the quality of resolution is affected by switching to the
new approach.
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2 Fifth-Order A-WENO Schemes for (1.1)

2.1 Existing A-WENO Schemes

We assume that the computational domain is covered with uniform cells Cj := [xj− 1
2
, xj+ 1

2
] of size

xj+ 1
2
− xj− 1

2
≡ ∆x centered at xj = (xj− 1

2
+ xj+ 1

2
)/2, j = 1, . . . , Nx. We also assume that at a

certain time t ≥ 0, the point values of the computed solution, Uj(t), are available (in the rest of
the paper, we will suppress the time-dependence of all of the indexed quantities for the sake of
brevity). In the framework of semi-discrete A-WENO schemes, Uj are evolved in time by solving
the following system of ODEs:

dUj

dt
= −

F j+ 1
2
−F j− 1

2

∆x
, (2.1)

where F j+ 1
2
are the fifth-order numerical fluxes, computed by

F j+ 1
2
= FFV

j+ 1
2
− (∆x)2

24
(Fxx)j+ 1

2
+

7(∆x)4

5760
(Fxxxx)j+ 1

2
. (2.2)

Here, FFV
j+ 1

2
= FFV

j+ 1
2

(
U−

j+ 1
2

,U+
j+ 1

2

)
stand for FV numerical fluxes, which depends on U−

j+ 1
2

and

U+
j+ 1

2

, which are the left- and right-sided values of U at x = xj+ 1
2
computed using the WENO-Z

interpolation procedure introduced in [1,5,17]. In this paper, we have utilized one of the simplest
FV numerical fluxes—the central (local Lax-Friedrichs, Rusanov) fluxes (see [27,36]):

FFV
j+ 1

2
=

F (U−
j+ 1

2

) + F (U+
j+ 1

2

)

2
−

aj+ 1
2

2

(
U+

j+ 1
2

−U−
j+ 1

2

)
,

where the local speed of propagation aj+ 1
2
is estimated using the eigenvalues λ1(A) ≤ . . . ≤ λd(A)

of the Jacobian A = ∂F
∂U

:

aj+ 1
2
= max

j

{∣∣λ1

(
A(U−

j+ 1
2

)
)∣∣, ∣∣λ1

(
A(U+

j+ 1
2

)
)∣∣, ∣∣λd

(
A(U−

j+ 1
2

)
)∣∣, ∣∣λd

(
A(U+

j+ 1
2

)
)∣∣}.

Finally, the higher-order correction terms (Fxx)j+ 1
2
and (Fxxxx)j+ 1

2
are the second- and fourth-

order spatial numerical derivatives of F at the cell interface x = xj+ 1
2
, which are computed using

the following FD approximations:

(Fxx)j+ 1
2
=

1

48(∆x)2
(−5Fj−2 + 39Fj−1 − 34Fj − 34Fj+1 + 39Fj+2 − 5Fj+3) ,

(Fxxxx)j+ 1
2
=

1

2(∆x)4
(Fj−2 − 3Fj−1 + 2Fj + 2Fj+1 − 3Fj+2 + Fj+3) ,

(2.3)

where Fj := F (Uj).

2.2 New A-WENO Schemes

In this section, we provide an alternative, more efficient way of computing the high-order correction
terms (Fxx)j+ 1

2
and (Fxxxx)j+ 1

2
, which are obtained by

(Fxx)j+ 1
2
=

1

12(∆x)2

[
−FFV

j− 3
2
+ 16FFV

j− 1
2
− 30FFV

j+ 1
2
+ 16FFV

j+ 3
2
−FFV

j+ 5
2

]
,

(Fxxxx)j+ 1
2
=

1

(∆x)4

[
FFV

j− 3
2
− 4FFV

j− 1
2
+ 6FFV

j+ 1
2
− 4FFV

j+ 3
2
+FFV

j+ 5
2

]
.

(2.4)
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Notice that the main difference between (2.4) and (2.3) is that in (2.4), we use FD approximations
of (Fxx)j+ 1

2
and (Fxxxx)j+ 1

2
terms with the help of the FV numerical fluxes FFV

j+ 1
2
instead of the

point values Fj. Clearly, the new A-WENO schemes are less computationally expensive than the
original ones as they do not require computing the point values Fj, while the values FFV

j+ 1
2
have to

be computed in (2.2) and then can be stored. At the same time, the new A-WENO schemes are
still fifth-order accurate and they can achieve the same high resolution as the original A-WENO
schemes as demonstrated in §4, where we present several numerical examples.

Remark 2.1 The way A-WENO high-order correction terms are computed can be straightfor-
wardly extended to the multidimensional case. They can also be extended to higher than fifth
order of accuracy via high-order Taylor expansions; see, e.g., [19] for details on the seventh- and
ninth-order A-WENO schemes.

3 Flux Globalization BasedWell-Balanced Path-Conservative

A-WENO Schemes for (1.2)

In this section, we extend the A-WENO schemes presented in §2 to the nonconservative systems
(1.2) via a flux globalization based framework.

3.1 Flux Globalization Based A-WENO Schemes

We begin with the extension of A-WENO schemes to the nonconservative systems (1.2), written in
the quasi-conservative form (1.3). A direct generalization of the semi-discrete A-WENO schemes
(2.1)–(2.2) reads as

dUj

dt
= −

Kj+ 1
2
−Kj− 1

2

∆x
, (3.1)

where Kj+ 1
2
are the fifth-order numerical fluxes:

Kj+ 1
2
= KFV

j+ 1
2
− (∆x)2

24
(Kxx)j+ 1

2
+

7(∆x)4

5760
(Kxxxx)j+ 1

2
.

Here, KFV
j+ 1

2
= KFV

j+ 1
2

(
U−

j+ 1
2

,U+
j+ 1

2

)
stand for FV numerical fluxes and in this paper, we use the

central (local Lax-Friedrichs, Rusanov) fluxes

KFV
j+ 1

2
=

K
(
U−

j+ 1
2

)
+K

(
U+

j+ 1
2

)
2

−
aj+ 1

2

2

(
U+

j+ 1
2

−U−
j+ 1

2

)
(3.2)

with the local speeds of propagation estimated using the eigenvalues λ1(A) ≤ . . . ≤ λd(A) of the
matrix A = ∂F

∂U
(U)−B(U):

aj+ 1
2
= max

j

{∣∣λ1

(
A(U−

j+ 1
2

)
)∣∣, ∣∣λ1

(
A(U+

j+ 1
2

)
)∣∣, ∣∣λd

(
A(U−

j+ 1
2

)
)∣∣, ∣∣λd

(
A(U+

j+ 1
2

)
)∣∣}.

The global fluxes K±
j+ 1

2

= K(U±
j+ 1

2

) in (3.2) are to be computed in such a way to ensure both

WB and path-conservative properties of the resulting scheme. To this end, we follow the approach
introduced in [26]. We first note that (1.2) admits steady-state solutions satisfying

F (U)x −B(U)Ux = 0. (3.3)
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As it was shown in [26] (also see [3,4,10]), for many particular nonconservative systems the relation
(3.3) can be written as

F (U)x −B(U)Ux = M(U)E(U)x = 0, (3.4)

where M ∈ Rd×d and E is the vector of equilibrium variables. If M is invertible (which is the case
in many practically interesting cases), the steady states satisfy the relation

E(U) ≡ Const.

Taking this into account, we evaluate K±
j+ 1

2

as follows:

K±
j+ 1

2

= F±
j+ 1

2

−R±
j+ 1

2

, (3.5)

where F±
j+ 1

2

:= F (U±
j+ 1

2

), and the point values U±
j+ 1

2

are to be obtained using a reconstruction

of the equilibrium variables E to ensure the WB property. To this end, we first compute the
point values Ej := E(Uj) and then apply the WENO-Z interpolation to evaluate E±

j+ 1
2

. The

corresponding values U±
j+ 1

2

are then computed by solving the (nonlinear systems of) equations

E(U+
j+ 1

2

) = E+
j+ 1

2

and E(U−
j+ 1

2

) = E−
j+ 1

2

forU+
j+ 1

2

andU−
j+ 1

2

, respectively. The point values of the global variableR±
j+ 1

2

in (3.5) are computed

in a path-conservative way. We first select x̂ = x 1
2
, set R−

1
2

:= 0, evaluate

R+
1
2

= BΨ, 1
2
, (3.6)

and then recursively obtain

R−
j+ 1

2

= R+
j− 1

2

+Bj, R+
j+ 1

2

= R−
j+ 1

2

+BΨ,j+ 1
2
, j = 1, . . . , Nx. (3.7)

In (3.6) and (3.7), Bj and BΨ,j+ 1
2
are obtained using (3.4) and proper quadratures:

Bj =

∫
Cj

B
(
U
)
Ux dx = F−

j+ 1
2

− F+
j− 1

2

−
∫
Cj

M
(
U
)
E(U)x dx,

BΨ,j+ 1
2
=

1∫
0

B
(
Ψj+ 1

2
(s)

)
Ψ′

j+ 1
2
(s) ds

= F+
j+ 1

2

− F−
j+ 1

2

− 1

2

[
M

(
U+

j+ 1
2

)
+M

(
U−

j+ 1
2

)] (
E+

j+ 1
2

−E−
j+ 1

2

)
,

(3.8)

where Ψj+ 1
2
(s) := Ψj+ 1

2
(s;U−

j+ 1
2

,U+
j+ 1

2

) is a sufficiently smooth path connecting the left- and

right-sided states U−
j+ 1

2

and U+
j+ 1

2

. We refer the readers to [15] for more details on the derivation

of (3.8).
In order to ensure the designed flux globalization based WB path-conservative A-WENO

scheme is fifth-order accurate, the integral Bj in (3.8) needs to be evaluated using at least a fifth-
order quadrature. In this paper, we use the Newton-Cotes quadrature introduced in [13, (4.4)].
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Finally, (Kxx)j+ 1
2
and (Kxxxx)j+ 1

2
are approximations of the second- and fourth-order spatial

derivatives of K at x = xj+ 1
2
, which can be computed using the same FD approximations as in

(2.3), namely, by

(Kxx)j+ 1
2
=

1

48(∆x)2
(−5Kj−2 + 39Kj−1 − 34Kj − 34Kj+1 + 39Kj+2 − 5Kj+3) ,

(Kxxxx)j+ 1
2
=

1

2(∆x)4
(Kj−2 − 3Kj−1 + 2Kj + 2Kj+1 − 3Kj+2 +Kj+3) ,

where Kj = F (Uj)−Rj(U) and

Rj(U) =

xj∫
x̂

B(U(ξ, t))Uξ(ξ, t) dξ. (3.9)

In order to obtain a fifth-order numerical scheme, the integral in (3.9) needs to be evaluated
within the fifth order of accuracy. We refer to reader to, e.g., [12] for the fifth-order Newton-Cotes
quadrature, which should be implemented in a recursive way.

3.2 More Efficient Flux Globalization Based A-WENO Schemes

In this section, we extend a new, more efficient A-WENO scheme from §2.2 to the nonconservative
system (1.2). We now compute the high-order correction terms (Kxx)j+ 1

2
and (Kxxxx)j+ 1

2
with

the help of the numerical fluxes:

(Kxx)j+ 1
2
=

1

12(∆x)2

[
−KFV

j− 3
2
+ 16KFV

j− 1
2
− 30KFV

j+ 1
2
+ 16KFV

j+ 3
2
−KFV

j+ 5
2

]
,

(Kxxxx)j+ 1
2
=

1

(∆x)4

[
KFV

j− 3
2
− 4KFV

j− 1
2
+ 6KFV

j+ 1
2
− 4KFV

j+ 3
2
+KFV

j+ 5
2

]
.

Notice that here we do not need to evaluate the point values Kj and, in particular, we do not
need to evaluate the integrals in (3.9). Therefore, the resulting new version of the flux globalization
based WB path-conservative A-WENO scheme is substantially less computationally expensive
than the scheme from §3.1.

Remark 3.1 As in the conservative case, the presented flux globalization basedWB path-conservative
A-WENO scheme can be straightforwardly extended to the multidimensional case and to higher
than fifth order of accuracy via higher-order Taylor expansions.

4 Numerical Examples

For the sake of brevity, the A-WENO schemes from §2.1 and §3.1 will be referred to as the Old
Schemes, while the A-WENO schemes from §2.2 and 3.2 will be referred to as the New Schemes.
In this section, we will test the New and Old Schemes on six numerical examples.

We numerically integrate the ODE systems (2.1) and (3.1) by the three-stage third-order strong
stability preserving (SSP) Runge-Kutta method (see, e.g., [20,21]) and use the CFL number 0.45.
In Example 4, where we test the accuracy of the studied A-WENO schemes, we take ∆t ∼ (∆x)5/3

to ensure that the time errors do not dominate the spatial ones.
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4.1 Scalar Equations

Example 1—Burgers Equation

In the first example, we consider the inviscid Burgers equation

ut +
(u2

2

)
x
= 0

subject to the 1-periodic initial conditions

u(x, 0) =
1

4
+

1

2
sin(2πx).

We first compute the numerical solutions by both the New and Old Schemes on the uniform
mesh with ∆x = 1/40 in the computational domain [0, 1] until the final time t = 0.4. The obtained
numerical results are plotted in Figure 4.1 along with the reference solution computed by the Old
Scheme on a much finer mesh with ∆x = 1/2000. As one can clearly see, the results obtained by
the New and Old Schemes are almost identical.

Figure 4.1: Example 1: Numerical solutions computed by the New and Old Schemes.

We then measure the CPU times consumed by both of the studied schemes and obtain that
the CPU time consumed by the Old Scheme is about 4.5% larger than the CPU time consumed
by the New Scheme. The difference is relatively small since the flux function f(u) = u2/2 is very
simple in this example.

Example 2—Buckley-Leverett Equation with Gravitational Effects

In the second example, we consider the Buckley-Leverett equation with gravitational effects, which
reads as

ut +

[
u2

u2 + (1− u)2
(1− k(1− u)2)

]
x

= 0.

We take k = 1, consider the 1-periodic initial conditions

u(x, 0) =
1

4
+

1

2
sin(2πx),

and compute the numerical solutions by both the New and Old Schemes on the uniform mesh
with ∆x = 1/40 in the computational domain [0, 1] until the final time t = 0.4. In Figure 4.2, we
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present the obtained results along with the reference solution computed by the Old Scheme on a
much finer mesh with ∆x = 1/2000. As in Example 1, the New and Old solutions almost coincide.
However, when we zoom at the area near the shock, one can see that the New Scheme produces
less oscillatory solution than the Old Scheme.

Figure 4.2: Example 2: Numerical solutions computed by the New and Old Schemes with the zoom
at the left part of the shock area.

Next, we measure the CPU times consumed by both of the studied schemes and obtain that
the CPU time consumed by the Old Scheme is about 7.2% larger than the CPU time consumed
by the New Scheme. The efficiency gain is now bigger than in Example 1. This suggests that one
can save more CPU time when the flux function is more complex.

Example 3—Scalar Equation with a Source Term

In the third example taken from [33], we consider the following nonconservative scalar equation:

ut + f(u)x + zxu = 0, f(u) =
u2

2
, z(x) =

{
− cos(πx) if x ∈ (3

2
, 5
2
),

0 otherwise.
(4.1)

We take the constant initial datum u(x, 0) ≡ 1 and impose the Dirichlet boundary conditions
u(0, t) = 2 and u(4, t) = 1 on the interval [0, 4]. It is easy to show that at the steady states
E := u+ z ≡ Const and a scalar version of equation (3.4),

f(u)x + zxu = M(u)Ex = 0,

is satisfied with M(u) = u.
We follow §3 and design the Old and New Schemes for (4.1). We then compute the numerical

solutions by both the obtained schemes on the uniform mesh with ∆x = 1/10 until the final time
t = 2.75 and present the snapshots of the computed solutions at t = 0.25, 0.75, 1.75, and 2.75 in
Figure 4.3 along with the reference solution computed by the Old Scheme on a much finer mesh
with ∆x = 1/10000. Compared with the results reported in [33, §5], our solutions are sharper
(as expected since our schemes are higher order). At the same time, one can clearly see that the
results obtained by the New and Old Schemes are almost identical.

We then measure the CPU times consumed by both of the studied schemes and obtain that
results show that the CPU times consumed by the Old Scheme are about 17.8% larger than the
CPU time consumed by the New Scheme. The difference is larger than in Examples 1 and 2.
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Figure 4.3: Example 3: Numerical solutions computed by the New and Old Schemes at different times.

This suggests that one can save much more CPU time by applying the new A-WENO schemes to
nonconservative hyperbolic PDEs.

4.2 Euler Equations of Gas Dynamics

In this section, we consider the 1-D Euler equations of gas dynamics:

ρt + (ρu)x = 0, (4.2)

(ρu)t + (ρu2 + p)x = 0, (4.3)

Et + [u(E + p)]x = 0, (4.4)

where ρ, u, p, and E are the density, velocity, pressure and total energy, respectively. The system
is completed through the equation of state for the ideal gas:

p = (γ − 1)
[
E − 1

2
ρu2

]
, (4.5)

where the parameter γ represents the specific heat ratio (we take γ = 1.4). When applying the
studied A-WENO schemes to (4.2)–(4.5), we perform the WENO-Z interpolation in the local
characteristic variables using the local characteristic decomposition, whose detailed description
can be found in [11].

In Example 4, we test the accuracy of the New and Old Schemes and demonstrate that both
the errors and experimental convergence rates are almost the same. In Examples 5 and 6, we
consider more challenging numerical examples and demonstrate that the New Scheme is capable
of achieving the same resolution as the Old Scheme.
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Example 4—Accuracy Test

In this example taken from [25], we consider the following smooth initial data:

u(x, 0) = sin
(πx

5
+

π

4

)
, ρ(x, 0) =

[
γ − 1

2
√
γ

(u(x, 0) + 10)

] 2
γ−1

, p(x, 0) = ργ(x, 0),

subject to the 10-periodic boundary conditions in the computational domain [0, 10].
We compute the numerical solutions by both the New and Old Schemes until the final time

t = 0.1 using both the New and Old Schemes on a sequence of uniform meshes with ∆x = 1/20,
1/40, 1/80, 1/160, 1/320, and 1/640. The densities computed with ∆x = 1/20 are plotted in
Figure 4.4 along with the reference solution computed by the Old Scheme on a much finer mesh
with ∆x = 1/320, where one can clearly see that the results obtained by the New and Old Schemes
are almost identical.

Figure 4.4: Example 4: Density ρ computed by the New and Old Schemes with ∆x = 1/20.

We then compute the L1-errors and estimate the experimental convergence rates using the
following Runge formulae, which are based on the solutions computed on the three consecutive
uniform grids with the mesh sizes ∆x, 2∆x, and 4∆x and denoted by (·)∆x, (·)2∆x, and (·)4∆x,
respectively:

Error(∆x) ≈ δ212
|δ12 − δ24|

, Rate(∆x) ≈ log2

(
δ24
δ12

)
.

Here, δ12 := ∥(·)∆x − (·)2∆x∥L1 and δ24 := ∥(·)2∆x − (·)4∆x∥L1 . The obtained results for the density
and total energy are reported in Table 4.1, where one can clearly see that the fifth order of accuracy
is achieved by the New Scheme and the errors are the same as those in the Old Scheme results.

Example 5—Shock Entropy Problem

In this example, we consider the shock-entropy problem introduced in [38]. The initial data are

(ρ, u, p)(x, 0) =

{
(1.51695, 0.523346, 1.805), x < −4.5,

(1 + 0.1 sin(20x), 0, 1), x > −4.5.

We impose free boundary condition at the both ends of the computational domain [−5, 5] and
compute the numerical solutions by both the New and Old Schemes until the final time t = 5 on
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∆x

New A-WENO Scheme Old A-WENO Scheme

ρ E ρ E

Error Rate Error Rate Error Rate Error Rate

1/160 1.44e-09 4.79 2.13e-08 4.76 1.44e-09 4.79 2.13e-08 4.76

1/320 3.88e-11 5.00 5.65e-10 4.99 3.88e-11 5.00 5.65e-10 4.99

1/640 1.25e-12 4.98 1.81e-11 4.98 1.25e-12 4.98 1.81e-11 4.98

Table 4.1: Example 4: The L1-errors and experimental convergence rates.

a uniform mesh with ∆x = 1/40. The obtained numerical results are plotted in Figure 4.5 along
with the reference solution computed by the Old Scheme on a much finer mesh with ∆x = 1/800.
As one can see from Figure 4.5 (right), where we zoom at the area where the solution has smooth
oscillatory structures, the results obtained by the New and Old Schemes almost coincide, which
suggests that the New Scheme is as accurate as the Old one.

Figure 4.5: Example 5: Density computed by the New and Old Schemes (left) and zoom at x ∈ [−2, 0]
(right).

Example 6—Blast Wave Problem

In the last example taken from [43], we consider the following initial conditions:

(ρ, u, p)(x, 0) =


(1, 0, 1000), x < 0.1,

(1, 0, 0.01), 0.1 ≤ x ≤ 0.9,

(1, 0, 100), x > 0.9,

subject to the solid wall boundary conditions imposed at the both ends of the computational
domain [0, 1].

We compute the numerical solutions until the final time t = 0.038 by both the New and Old
Schemes on a uniform mesh with ∆x = 1/400 and plot the obtained results in Figure 4.6 along
with the reference solution computed by the Old Scheme on a much finer grid with ∆x = 1/8000.
Once again, one can see that the New and Old Schemes achieve the same resolution.
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Figure 4.6: Example 6: Density computed by the New and Old Schemes (left) and zoom at x ∈
[0.55, 0.85] (right).

5 Conclusions

In this paper, we have developed new more efficient fifth-order A-WENO schemes for both con-
servative and nonconservative nonlinear hyperbolic systems. A higher efficiency is achieved by
utilizing the numerical fluxes in the computation of high-order correction terms. We have per-
formed a careful numerical study of the proposed schemes and demonstrated that they may be up
to 18% more efficient than the existing A-WENO schemes and at the same time, neither accuracy
of capturing smooth parts of the solutions nor the resolution of discontinuous parts of the solution
are affected by switching to the new approach.
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