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Abstract

Behavioral non-equilibrium hyperbolic traffic models, derived from approximated car-following models with
human factors, can lose their conservative form, rendering traditional flux-based numerical methods inef-
fective. This challenge also applies to the recently proposed behavioral continuum (non-equilibrium traffic
model based on risk allostasis theory, that is, NET-RAT) model. This paper is focused on solving the Rie-
mann problem and several other initial-value problems for the novel NET-RAT model in the non-conservative
form, by developing path-conservative central-upwind (PCCU) schemes. In order to examine performance of
the proposed PCCU schemes, we design extensive numerical tests considering the unique behavioral proper-
ties of the NET-RAT model. The PCCU schemes are then applied to these tests and the obtained results
demonstrate that major wave types are effectively and accurately captured. At the same time, the fifth-order
scheme, which is constructed using an alternative weighted essentially non-oscillatory (A-WENO) approach
yields substantially sharper resolution than its second-order counterpart. The proposed schemes can facilitate
the practical implementation of the NET-RAT model for real-world traffic.
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1. Introduction

Continuum traffic flow models use aggregated variables to describe traffic dynamics as a compressible
fluid. These models are formulated as hyperbolic systems of partial differential equations (PDEs), allowing
the determination of state variables over time and space based on initial and boundary conditions [29].
These models find applications in short-term traffic prediction, congestion propagation, freeway and network
optimizations, and the study of complex traffic phenomena [see, e.g., 26, 31]. Over time, numerous continuum
models have been proposed to incorporate various behavioral and empirical aspects of traffic flow; we refer
the reader to [25] and [24] for a detailed review and performance analysis for real-world traffic flows.

In contrast to many physical systems, traffic flow is heavily influenced by real-time decision-making
processes of human drivers [11]. These processes are governed by psychological factors that shape their
perception of traffic conditions. Several empirical studies have established strong connections between these
human factors and complex traffic phenomena, such as hysteresis and traffic instabilities [2, 27], highlighting
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the importance of developing improved behavioral models that can effectively incorporate the impact of these
factors.

From a macroscopic standpoint, a relevant question would be to examine how such microscopic behavioral
processes influence collective characteristics of traffic flow, including wave propagation and stability. Explor-
ing such aspects involves integrating human factors into a well-defined car-following model and then deriving
a behavioral macroscopic model that serves as the corresponding continuum “equivalent” [16]. Well-defined
behavioral continuum models are, however, notably rare in the literature of macroscopic traffic flow models.
This scarcity can be attributed to the requirement of incorporating a comprehensive theory of human driv-
ing factors into the foundational assumptions of the car-following model. As a result, the development of
complex behavioral mechanisms is likely to compromise the conservative nature of the hyperbolic equations
in the resulting continuum model [20]. Consequently, classical numerical methods that rely on numerical
fluxes (see, e.g., [15, 19, 22]) cannot be applied to study Riemann problems in this context and, in general,
to capture discontinuous solutions of the considered non-conservative models [32]. In other words, the pres-
ence of numerical challenges might have hindered the development of complex behavioral continuum models,
highlighting the importance of addressing this research gap.

Motivated by an attempt to close the research gap, a novel behavioral continuum model, known as
NET-RAT (Non-Equilibrium Traffic model based on Risk Allostasis Theory), has been developed in [23].
NET-RAT is a parsimonious “second-order” continuum model that incorporates drivers’ dynamic response
adaptation process in relation to their perceived risk through car-following processes. This model effectively
associates the emergence of complex traffic phenomena (such as hysteresis and traffic instabilities) with
the interplay between drivers’ dynamic adaptation process and their perceived car-following risk. NET-
RAT’s rule-based and switching logic, along with its intricate behavioral adaptation mechanisms, prevent its
governing equations from being expressed explicitly in a conservative form. Therefore, the NET-RAT model
has the same numerical limitations as the other aforementioned non-conservative traffic flow models [19, 22].

This paper focuses on the development of robust and accurate numerical methods for the NET-RAT
traffic flow model. In order to overcome the difficulties associated with the lack of conservation, we adopt
the path-conservative approach and, as in our recent work [3], develop path-conservative central-upwind
(PCCU) schemes for the NET-RAT model. We first derive a second-order finite-volume (FV) PCCU scheme
and then extend it to the fifth-order of accuracy through the finite-difference (FD) alternative weighted essen-
tially non-oscillatory (A-WENO) framework. Extensive numerical tests, considering the unique behavioral
characteristics of NET-RAT, are designed in order to assess the proposed schemes. The obtained results
demonstrate that major wave types are effectively and accurately captured. At the same time, the fifth-order
A-WENO scheme leads to a substantially higher resolution compared with its second-order counterpart.

The rest of the paper is organized as follows. Section 2 provides an overview of the NET-RAT model.
Section 3 presents the proposed PCCU schemes. Section 4 contains the study design, results, and discussions,
which cover various aspects such as numerical tests, parameter setup, and the performance evaluation of the
proposed numerical methods. Finally, Section 5 presents the concluding remarks.

2. The Behavioral NET-RAT Traffic Model

The novel continuum NET-RAT model has recently been developed in [23]. This model is derived from
extending the full velocity difference car-following model [13], where the driver sensitivity is extended to
be dynamically dependent on the perceived risk, which is modeled based on the proportion of the stopping
distance [see, e.g., 21]. The interactions between perceived risk and driver sensitivity are further modeled
based on the risk allostasis theory [7]. For a more detailed discussion on the derivation processes from
car-following relations, we refer the reader to [23].

The NET-RAT model for a section of a homogeneous road in its hyperbolic form reads as
ρt + (ρV )x = 0,

Vt + V Vx =
Ve(ρ)− V

Trelax
− ψ(Rperc)C(ρ)Vx.

(1)

Here, x is the spatial variable, t is time, ρ is the traffic density, V is the speed, Ve(ρ) denotes the equilibrium
speed or the fundamental diagram, and Trelax is the relaxation time. The specific formulation for Ve(ρ) is
provided in [5] and it reads as

Ve(ρ) =
Cjam

ρ̃

[
1 + (a− 1)ρ̃−

(
(aρ̃)θ + (1− ρ̃)θ

) 1
θ

]
,
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where ρ̃ := ρ/ρmax represents the normalized traffic density, a := Vmax/Cjam denotes the ratio of the maximum
speed to the magnitude of jam, Cjam, which corresponds to the magnitude of the propagation velocity
λ∗ = Ve(ρ) + C(ρ) under the jam condition when the density is at its maximum (ρ = ρmax), and θ ∈ (1,∞)
serves as a shape parameter. Moreover, in (1), C(ρ) = ρV ′

e (ρ) indicates the relative rate at which smooth
variations in the traffic density profile propagate, as observed by a moving observer traveling at the average
traffic speed if ψ(Rperc) = 1, and ψ(Rperc) takes into account the influence of drivers’ perceived risk on
their sensitivity and, consequently, on the propagation velocity of disturbances. This function is defined as a
function of speed density as

ψ(Rperc) =


1− γ1

(
Larr −Rperc

Larr

)
if Rperc < Larr,

1 if Larr ≤ Rperc ≤ Uarr,

1 + γ2

(
Rperc − Uarr

Rperc

)
if Rperc > Uarr,

where Rperc is the perceived risk, defined by

Rperc =



1

PSDmin
if µPSD(x, t) < PSDmin,

1

PSDmax
if µPSD(x, t) > PSDmax,

1

µPSD(x, t)
otherwise.

Here, PSDmin and PSDmax are the lower and upper bounds for the proportion of stopping distance (PSD),
which represents the ratio between a vehicle’s available spacing gap and its stopping distance at any given
time, and µPSD is the continuum approximation of the average PSD, developed in [21]:

µPSD(x, t) = 2bcomf
ρjam − ρ

ρjamρV 2
,

where bcomf is the maximum comfortable deceleration rate. Finally, Larr and Uarr serve as the lower and
upper bounds, respectively, defining the acceptable range of risk:{

Larr = Rperc(ρ, V
L(ρ)), V L(ρ) = Ve

(
ρ(1 + δL)

)
,

Uarr = Rperc(ρ, V
U (ρ)), V U (ρ) = Ve

(
ρ(1 + δU )

)
,

where V L(ρ) and V R(ρ) represent the shifted speed-density curves compared to the equilibrium one. The
constants δL and δU are subject to the condition δU < δL in order to maintain the consistency condition
Larr ≤ Uarr.

The NET-RAT model can be rewritten in a vector form as

Ut + F (U)x = B(U)Ux + S(U), (2)

where

U =

(
ρ
V

)
, F =

ρVV 2

2

 , B(U) =

(
0 0
0 −ψ(Rperc)C(ρ)

)
, S(U) =

 0

Ve(ρ)− V

Trelax

 . (3)

The system (2)–(3) can be also recast in the following quasilinear form:

Ut +A(U)Ux = S(U), A(U) =
∂F

∂U
−B(U) =

(
V ρ

0 ψ(Rperc)C(ρ) + V

)
. (4)

3. Numerical Methods

In this section, we review the second-order FV PCCU and fifth-order FD A-WENO PCCU schemes for
solving general non-conservative systems (2).
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3.1. Second-Order Path-Conservative Central-Upwind Scheme

We first review the second-order FV PCCU scheme, which was introduced in [1] and then modified in [4].
We cover the computational domain with uniform cells Cj := [xj− 1

2
, xj+ 1

2
] of size ∆x centered at xj =

(xj− 1
2
+ xj+ 1

2
)/2. We assume that at a certain time t ≥ 0, the computed solution, realized in terms of its

cell averages

U j(t) :≈
1

∆x

∫
Cj

U(x, t) dx,

is available. For the sake of simplicity and conciseness, from now on, we will omit the explicit dependence
on time for all of the indexed quantities.

The numerical solution is evolved in time by solving the following system of ODEs:

dU j

dt
= − 1

∆x

[
F j+ 1

2
−F j− 1

2
−Bj −

a+
j− 1

2

a+
j− 1

2

− a−
j− 1

2

BΨ,j− 1
2
+

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

BΨ,j+ 1
2

]
+ S(U j), (5)

where the CU numerical fluxes are given by

F j+ 1
2
=
a+
j+ 1

2

F (U−
j+ 1

2

)− a−
j+ 1

2

F (U+
j+ 1

2

)

a+
j+ 1

2

− a−
j− 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

(
U+

j+ 1
2

−U−
j+ 1

2

−Qj+ 1
2

)
. (6)

Here, U±
j+ 1

2

are the right- and left-sided point values of U at the cell interface x = xj+ 1
2
obtained by a

piecewise linear reconstruction

Ũ(x) = U j + (Ux)j(x− xj), x ∈ Cj , (7)

so that

U−
j+ 1

2

= U j +
∆x

2
(Ux)j , U+

j+ 1
2

= U j+1 −
∆x

2
(Ux)j+1. (8)

In order to ensure the second order of accuracy of (8), the slopes (Ux)j have to be at least first-order
approximation of Ux(xj , t). Moreover, the reconstruction (7) will be non-oscillatory provided (Ux)j are
computed using a nonlinear limiter. In our numerical experiments, we have utilized the minmod limiter; see,
e.g., [28]:

(Ux)j = minmod

(
U j − U j−1

∆x
,
U j+1 − U j

∆x

)
, (9)

which is applied in the component-wise manner. Here, the minmod function is defined by

minmod(z1, z2) :=
sign(z1) + sign(z2)

2
·min

(
|z1|, |z2|

)
. (10)

The term Qj+ 1
2
given by

Qj+ 1
2
= minmod

(
U+

j+ 1
2

−U∗
j+ 1

2
,U∗

j+ 1
2
−U−

j+ 1
2

)
with

U∗
j+ 1

2
=
a+
j+ 1

2

U+
j+ 1

2

− a−
j+ 1

2

U−
j+ 1

2

−
{
F (U+

j+ 1
2

)− F (U−
j+ 1

2

)
}

a+
j+ 1

2

− a−
j+ 1

2

,

represents a “built-in” anti-diffusion term in the numerical flux (6); see [17] for the derivation of this term.
The one-sided local speeds of propagation a±

j+ 1
2

are estimated using the largest and smallest eigenvalues of

A: λmax(A) and λmin(A), for instance, by

a+
j+ 1

2

= max
{
λmax

(
A(U+

j+ 1
2

)
)
, λmax

(
A(U−

j+ 1
2

)
)
, 0
}
,

a−
j+ 1

2

= min
{
λmin

(
A(U+

j+ 1
2

)
)
, λmin

(
A(U−

j+ 1
2

)
)
, 0
}
.

(11)
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Finally, the terms Bj and BΨ,j+ 1
2
in (5) reflect the contributions of the non-conservative product terms

inside the computational cell Cj and at the interface x = xj+ 1
2
, respectively:

Bj :≈
∫
Cj

B(U(x, t))Ux(x, t) dx, BΨ,j+ 1
2
:=

1∫
0

B
(
Ψj+ 1

2
(s)
)dΨj+ 1

2
(s)

ds
ds. (12)

Here, Bj is calculated by substituting Ũ(x) instead of U(x, t) and evaluating the resulting integral, and
BΨ,j+ 1

2
is computed using a path Ψj+ 1

2
(s) connecting the left- and right-sided states U−

j+ 1
2

and U+
j+ 1

2

. For

details on evaluating (12), we refer the reader to [1].

3.2. Fifth-Order A-WENO Path-Conservative Central-Upwind Scheme

In this section, we provide a brief overview of the fifth-order A-WENO PCCU scheme introduced in [3].
Firstly, we restate the non-conservative system (2) in a quasi-conservative form:

Ut +K(U)x = S(U), K
(
U(x, t)

)
= F

(
U(x, t)

)
−

x∫
x̂

B
(
U(ξ, t)

)
Ux(ξ, t) dξ,

where K represents the global flux and x̂ is an arbitrary number. The numerical solution Uj ≈ U(xj , t) is
advanced in time by solving the following system of ODEs:

dUj

dt
=− 1

∆x

[
F j+ 1

2
−F j− 1

2
−Bj −

a+
j− 1

2

a+
j− 1

2

− a−
j− 1

2

BΨ,j− 1
2
+

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

BΨ,j+ 1
2

]
+

∆x

24

[
(Kxx)j+ 1

2
− (Kxx)j− 1

2

]
− 7

5760
(∆x)3

[
(Kxxxx)j+ 1

2
− (Kxxxx)j− 1

2

]
+ S(Uj),

(13)

where F j+ 1
2
, Bj , BΨ,j+ 1

2
, and a±

j+ 1
2

are defined as in Section 3.1, but U±
j+ 1

2

are now calculated using the

fifth-order WENO-Z interpolant applied to the local characteristic variables. The specific procedure for the
WENO-Z interpolant from [14, 18, 30, 6, 8], can be found in [3, Appendix A], while the local characteristic
decomposition for the NET-RAT traffic flow system is presented in Section 4.

Finally, the correction terms (Kxx)j+ 1
2
and (Kxxxx)j+ 1

2
are fourth- and second-order FD approximations

of the spatial derivatives of K(U(·, t)), respectively:

(Kxx)j+ 1
2
=

1

48(∆x)2
(−5Kj−2 + 39Kj−1 − 34Kj − 34Kj+1 + 39Kj+2 − 5Kj+3) ,

(Kxxxx)j+ 1
2
=

1

2(∆x)4
(Kj−2 − 3Kj−1 + 2Kj + 2Kj+1 − 3Kj+2 +Kj+3) .

Here, Kj = F (Uj)− Ij and

Ij :≈
xj∫
x̂

B
(
U(ξ, t)

)
Ux(ξ, t) dξ.

Notice that in order to achieve a fifth-order accuracy, it is necessary to evaluate the integral Ij and the
integral in the term Bj in (12) using an (at least) fifth-order quadrature. In our numerical experiments, we
have used the fifth-order Newton-Cotes quadrature from [3].

4. Study Design, Results, and Discussions

In this section, we apply the schemes from Section 3 to the NET-RATmodel to investigate the performance
of the PCCU schemes and shed light on certain behavioral aspects of the NET-RAT model. We test the
second-order FV PCCU and fifth-order FD A-WENO PCCU schemes on several numerical examples and
compare their performances. The tested schemes will be referred to as the 2-Order Scheme and 5-Order
Scheme, respectively.

We numerically integrate the ODE systems (5) and (13) by the three-stage third-order strong stability
preserving (SSP) Runge-Kutta method [see, e.g., 10, 9] and use the CFL number 0.5. The values of the
parameters in the NET-RAT model borrowed from [23], are listed in Table 1.
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Table 1: NET-RAT’s parameter descriptions and the values adopted for numerical investigations. ARR stands for acceptable
range of risk.

Parameter Description Selected value

Vmax the maximum speed in the free-flow traffic 1121/36 (m/s)

|Cjam| the magnitude of the propagation velocity λ∗ = Ve(ρ) + ρVe(ρ) 71/18 (m/s)

under the jam condition (that is, at ρ = ρjam)

θ shape parameter 10.04

ρmax the maximum density 0.11413 (veh/m)

Trelax relaxation time 40 (s)

PSDmin the minimum practical value of PSD 0.2

PSDmax the maximum practical value of PSD 5

bcomf the maximum comfortable deceleration rate 4

γ1 drivers’ sensitivity to perceived risk below ARR 0.5

γ2 drivers’ sensitivity to perceived risk above ARR 1.052

δL shape parameter that determines the lower boundary of ARR Variable

δU shape parameter that determines the lower boundary of ARR Variable

4.1. Specifications of the PCCU Scheme for the NET-RAT Model

For the 2-Order Scheme, the point values ρ±
j+ 1

2

and V ±
j+ 1

2

are computed using the piecewise linear minmod

reconstruction (7)–(10).
For the 5-Order Scheme, we utilize the WENO-Z interpolation applied to the local characteristic variables,

which are derived through the local characteristic decomposition. To this end, we first introduce

A
(
Ûj+ 1

2

)
=

(
V̂j+ 1

2
ρ̂j+ 1

2

0 Ĉj+ 1
2
ψ̂j+ 1

2
+ V̂j+ 1

2

)
,

where A is defined in (4), and

ρ̂j+ 1
2
=
ρj + ρj+1

2
, V̂j+ 1

2
=

√
ρj Vj +

√
ρj+1 Vj+1

√
ρj +

√
ρj+1

,

Ĉj+ 1
2
= ρ̂j+ 1

2
V ′
e (ρ̂j+ 1

2
), ψ̂j+ 1

2
= ψ

(
Rperc(ρ̂j+ 1

2
, V̂j+ 1

2
)
)
.

The matrix A
(
Ûj+ 1

2

)
is then diagonalized with the help of the matrices

Rj+ 1
2
=

1
ρ̂j+ 1

2

Ĉj+ 1
2
ψ̂j+ 1

2

0 1

 and R−1
j+ 1

2

=

1 −
ρ̂j+ 1

2

Ĉj+ 1
2
ψ̂j+ 1

2

0 1

 ,

which are used to switch from and to the local characteristic variables. Namely, in the neighborhood of
x = xj+ 1

2
, we introduce the local characteristic variables

Γk = R−1
j+ 1

2

Uk, k = j − 2, . . . , j + 3,

apply the WENO-Z interpolation to these six values of Γ to obtain the point values Γ±
j+ 1

2

, and then switch

back to the conservative variables
U±

j+ 1
2

= Rj+ 1
2
Γ±
j+ 1

2

.
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Figure 1: Accuracy test: Density (ρ) profiles at t = 0 and 400 s computed by the 2-Order scheme.

Equipped with the reconstructed point values ρ±
j+ 1

2

and V ±
j+ 1

2

, we estimate the one-sided local speeds of

propagation by (11), which for the system (2)–(3) reduces to

a+
j+ 1

2

= max
{
V +
j+ 1

2

, V −
j+ 1

2

, 0
}
, a−

j+ 1
2

= min
{
V +
j+ 1

2

+ ψ+
j+ 1

2

C+
j+ 1

2

, V −
j+ 1

2

+ ψ−
j+ 1

2

C−
j+ 1

2

, 0
}
,

where C±
j+ 1

2

= ρ±
j+ 1

2

V ′
e (ρ

±
j+ 1

2

) and ψ±
j+ 1

2

= ψ
(
Rperc(ρ

±
j+ 1

2

, V ±
j+ 1

2

)
)
.

4.2. Accuracy Test

This subsection is devoted to the experimental check of the numerical accuracy and rates of convergence
of the proposed schemes. Before delving into the detailed analysis of the schemes’ performance in handling
discontinuities in various Riemann problems, it is crucial to first verify their performance on the initial value
problem with smooth initial data and smooth solutions.

In the first numerical example, we demonstrate the experimental rates of convergence of the studied
2-Order and 5-Order Schemes. We consider the following smooth initial data:

ρ(x, 0) =
1 + φ(x)

5
ρmax, V (x, 0) =

1 + φ(x)

5
Vmax,

φ(x) =


1

10
sin4

[ π

24000
(x− 8000)

]
, 8000 < x < 32000,

0, otherwise,

prescribed in the computational domain [0, 40000] subject to free boundary conditions. We compute the
numerical solution until the final time t = 400 s (at which the solution is still smooth; see Figure 1) using
the 2-Order and 5-Order Schemes on a sequence of uniform meshes with ∆x = 40, 20, 10, 5, and 5/2. We
then estimate the L1-errors and corresponding experimental convergence rates using the following Runge
formulae, which are based on the solutions computed on three consecutive uniform grids with the mesh sizes
∆x, 2∆x, and 4∆x and denoted by (·)∆x, (·)2∆x, and (·)4∆x, respectively:

Error(∆x) ≈ δ212
|δ12 − δ24|

, Rate(∆x) ≈ log2

(
δ24
δ12

)
.

Here, δ12 := ∥(·)∆x − (·)2∆x∥L1 and δ24 := ∥(·)2∆x − (·)4∆x∥L1 .
For the 5-Order Scheme, we select ∆t ∼ ∆x5/3, which balances the contribution of the temporal and spa-

tial errors. The obtained results, reported in Table 2, clearly demonstrate that the experimental convergence
rates correspond to the formal rates of the studied schemes.

4.3. Description of the Riemann Problems and Parameter Set-Up

This subsection presents the numerical test cases designed for the NET-RAT model, which will be used
to evaluate the performance of the proposed numerical schemes. We begin our discussions by elaborating on
the Riemann problem and specific properties of the NET-RAT model. To this end, let us consider the initial
Riemann data of the form:

U(x, 0) =

{
UL if x < x0,

UR otherwise,
(14)
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Table 2: Accuracy test: L1-errors and experimental convergence rates for ρ.

∆x
2-Order Scheme 5-Order Scheme

Error Rate Error Rate

10 1.39e-4 1.98 2.44e-9 4.97

5 3.47e-5 1.99 7.60e-11 4.99

5/2 8.68e-6 1.99 2.60e-12 4.93

Figure 2: Three different possibilities for the status of the UL and UR in the speed-density plane.

where UL and UR represent the values of the state variables on the left and right sides of the discontinuity.
Depending on the UL and UR values, several Riemann problem solution structures (combinations of shocks,
rarefaction waves, and intermediate states) are possible.

Here, we present a range of numerical tests that represent qualitatively different Riemann problem solu-
tions. It is important to emphasize that in the NET-RAT flow model, the solution structures for the Riemann
problems are determined by multiple factors. These factors include the relative status of the state variables
on both sides compared to the fundamental diagram, as well as the perception of risk not only on each side
but also along the density range on the fundamental diagram.

To further elaborate, Figure 2 schematically shows three different possibilities (among others) for the
status of UL and UR in the speed-density plane. These three cases have distinct properties which affect the
solution structures.

For instance, in Case 1, both UL and UR are in areas bounded by the boundaries of the acceptable range
of risk, where the risk perception parameters are also set such that the condition V L

+ < Ve < V U
+ holds, where

V L
+ (ρ) = max

{
V L(ρ), 0

}
, V U

+ (ρ) = max
{
V U (ρ), 0

}
.

In this case, ψ(Rperc) = 1 holds and the NET-RAT model becomes equivalent to a special case of the GSOM
model family, that is, the model in [33] with a relaxation term, which can be written in the conservative form.
In our recent work [3], we have shown that our proposed PCCU approach can solve the Riemann problem for
the aforementioned GSOM model, and therefore, we will not consider the Riemann problems that correspond
to Case 1.

In contrast, Riemann problems in Cases 2 and 3 are much more complicated as neither of UL and UR or
the equilibrium states are within the boundaries of the acceptable range of risk. In such cases, solutions of
the Riemann problems will inevitably contain multiple waves and intermediate states between left and right
states.

In this work, we conduct comprehensive numerical tests that encompass both Case 2 and Case 3. With
the model parameters in Table 1, we establish eight numerical tests, which are specified in Table 3.

4.4. Performance of the PCCU Schemes for the Riemann Problems

In this section, we apply the proposed numerical methods to solve the NET-RAT model using different
risk perception parameters δL and δU for the eight test cases described in Table 3.
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Table 3: Data for the eight Riemann problems (14).

Test ρL ρR VL VR x0 δL δU

1 0.3ρmax 0.3ρmax Ve(ρ)− 5 Ve(ρ) 20000 0.2 0.1

2 0.3ρmax 0.3ρmax Ve(ρ)− 5 Ve(ρ) 20000 -0.2 -0.25

3 0.3ρmax 0.3ρmax Ve(ρ) + 5 Ve(ρ) 20000 0.1 0

4 0.3ρmax 0.7ρmax Ve(ρ)− 5 Ve(ρ) + 5 20000 -0.1 -0.2

5 0.85ρmax 0.2ρmax Ve(ρ) + 5 Ve(ρ) + 5 20000 -0.1 -0.2

6 0.85ρmax 0.2ρmax Ve(ρ) + 5 Ve(ρ) + 5 20000 -0.2 -0.25

7 0.85ρmax 0.2ρmax Ve(ρ) + 5 Ve(ρ) + 5 20000 -0.25 -0.3

8 0.85ρmax 0.2ρmax Ve(ρ) + 2 Ve(ρ)− 5 20000 -0.2 -0.25

Figure 3: The states of UL and UR in the speed-density plane for Tests 1 (left) and 2 (right).

4.4.1. Solving the NET-RAT Model in the Absence of the Relaxation Term

We first investigate the solutions of the Riemann problems in the absence of the relaxation term Ve(ρ)−V
Trelax

in (1). The primary motivation for excluding the relaxation term in the previous sub-section was twofold:
(a) The proposed PCCU schemes primarily focus on the treatment of nonlinear conservative terms. By

excluding the relaxation term, we can better assess the schemes’ performance without the confounding effects
that the relaxation term might introduce. These effects include dominating the schemes’ performance near
equilibrium states and altering solution structures and propagation near shocks and discontinuities;

(b) In the NET-RAT model, the interplay between perceived risk and adaptation response time is primarily
manifested in the characteristic waves. By omitting the relaxation term, we can specifically investigate the
portions of the macroscopic traffic waves that are generated by the nonlinear conservative terms, offering a
clearer understanding of the influence of perceived risk on these particular wave components.

We compute the numerical results until the final time t = 200 s by both the 2-Order and 5-Order Schemes
using 400 uniform cells in the computational domain [0, 40000] subject to free boundary conditions. In
Figures 4–11, we present the results, including the density and speed cross-sectional profiles at t = 200 s. For
each graph, we plot the results obtained using the 2-Order and 5-Order Schemes together with the reference
solutions, which are computed by the 5-Order Scheme on a much finer mesh with 20000 uniform cells. As
one can see, the PCCU schemes capture the solution structures of the comprehensive Riemann problems.

Let us now take a closer look at the results and shed light on physical and numerical implications of
the obtained results. First, we observe that in all of the Tests, the solutions contain an intermediate state,
which separates the left- and right-going waves: strong shocks and rarefactions, both in acceleration and
deceleration situations. Additionally, contact discontinuities, at which the speed profile remains invariant
across the density jump, appear in all of the Tests.

The PCCU schemes exhibit desirable performance in various aspects, with a notable focus on sharpness
near shocks and contact discontinuities. Comparing the 2-Order and 5-Order Schemes, it is evident that the
5-Order Scheme outperforms its 2-Order counterpart, while both the 2-Order and 5-Order Schemes produce
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Figure 4: §4.4.1, Test 1: Density (left) and speed (right) computed by the 2-Order and 5-Order Schemes.

Figure 5: §4.4.1, Test 2: Same as in Figure 4.

Figure 6: §4.4.1, Test 3: Same as in Figure 4.

Figure 7: §4.4.1, Test 4: Same as in Figure 4.

almost non-oscillatory results.
Finally, let us briefly discuss how the PCCU schemes consistently reveal the impacts of risk perception in

the NET-RAT model, particularly concerning the generation and propagation of characteristic waves in the
absence of the relaxation term. When the perceived risk is below the acceptable range, drivers’ sensitivity
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Figure 8: §4.4.1, Test 5: Same as in Figure 4.

Figure 9: §4.4.1, Test 6: Same as in Figure 4.

Figure 10: §4.4.1, Test 7: Same as in Figure 4.

Figure 11: §4.4.1, Test 8: Same as in Figure 4.

to frontal stimuli is reduced, and as a result, drivers would take more time to respond and adapt to the
changes in the traffic condition ahead. From a macroscopic perspective, this indicates that those components
of the waves generated by the NET-RAT model, specifically the characteristic waves in the absence of the
relaxation term, propagate slower. On the other hand, if the perceived risk is above the acceptable range,
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Figure 12: Spatio-temporal evolution of traffic density for Tests 5–7 with the same initial data but different risk perception
parameters. With a decrease in δL and δU (from left to right), drivers’ perception of risk and alertness increase, and they
respond to the traffic conditions ahead quicker. Consequently, traffic waves propagate quicker.

drivers’ sensitivity to frontal stimuli increases. Consequently, the characteristic waves of the NET-RAT model
propagate more swiftly in response to the ahead traffic conditions.

The same observations apply to the changes in traffic density over time, as shown in Figure 12, when we
vary the risk perception parameters (δL and δU ) while keeping the same initial conditions. In this situation,
it becomes evident that drivers with a heightened sense of risk perception are more attuned to the traffic
conditions ahead. As a result, they react more swiftly, causing the waves on both sides of the intermediate
state to propagate faster.

These properties are reflected in the results generated by the PCCU schemes. To elaborate, we consider
Figure 3, which illustrates the left and right state variables compared to the boundaries of the acceptable
range of risk in the speed-density plane for Tests 1 and 2. The corresponding solutions presented in Figures
4 and 5, respectively, show that for drivers whose perception of risk is lower (Test 2), the intermediate states
span in a smaller region, compared to the case with higher risk perception (Test 1).

4.4.2. Solving the NET-RAT Model in the Presence of the Relaxation Term

In the previous subsection, we have numerically solved the Riemann problems for the NET-RAT model
in the absence of the relaxation term: therefore the tests presented in Section 4.4.1 are rather academic. In
practical scenarios, simulating the NET-RAT model with the relaxation term is essential for validating the
proposed schemes’ applicability in real-world situations. As in Section 4.4.1, we consider scenarios detailed
in Table 3 and run the simulations up to time t = 200 s using both the 2-Order and 5-Order Schemes on 400
uniform cells in the computational domain [0, 40000] subject to free boundary conditions. For comparative
analysis, reference solutions are obtained using the 5-Order Scheme on a finer grid of 20000 uniform cells,
and the results, including density and speed profiles, are showcased in Figures 13–20.

Figure 13: §4.4.2, Test 1: Density (left) and speed (right) computed by the 2-Order and 5-Order Schemes.

The obtained results show that the relaxation term significantly alters the solution structures in all of the
Tests, particularly impacting the intermediate states that bridge the waves from the left and right sides of
the initial discontinuity. When compared to the scenarios without the relaxation term shown in Figures 4–11,
one can see that the relaxation term restricts the spatial development of the intermediate states, resulting in
a quicker convergence of the waves.
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Figure 14: §4.4.2, Test 2: Same as in Figure 13.

Figure 15: §4.4.2, Test 3: Same as in Figure 13.

Figure 16: §4.4.2, Test 4: Same as in Figure 13.

Figure 17: §4.4.2, Test 5: Same as in Figure 13.

Upon incorporating the relaxation term, it is evident that the proposed schemes are capable of capturing
the overall solution structures in a range of test cases, where the solutions are composed of compounded
waves including multiple shock waves, rarefaction waves, and contact discontinuities. Overall, the 5-Order
Scheme markedly outperforms the 2-Order Scheme, particularly in regions where the intermediate states
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Figure 18: §4.4.2, Test 6: Same as in Figure 13.

Figure 19: §4.4.2, Test 7: Same as in Figure 13.

Figure 20: §4.4.2, Test 8: Same as in Figure 13.

are eliminated, and the waves on either side of the initial discontinuities quickly converge, as exemplified in
Figures 13 and 20.

This phenomenon leads to a more noticeable accuracy gap between the reference solutions and the pro-
posed schemes in these convergence zones. Such instances underscore the importance of selecting high-order
spatial discretization schemes for accurately capturing complex traffic flow dynamics, as they offer pronounced
justifications for their use in scenarios with rapidly converging waves and complex wave structures.

4.5. Periodic Initial Data

In this subsection, our analysis of the NET-RAT model’s performance includes a simulation that intro-
duces a slight disturbance into the otherwise stable and consistent traffic flow on a ring road with periodic
boundary conditions.

To this end, we consider the well-known perturbation function in [12], and use the following initial
condition:

ρ(x, 0) = ρ0 +∆ρσ(x), V (x, 0) = Ve(ρ),

σ(x) =

{
cosh−2

(
x−4000
W+

)
− W+

W− cosh−2
(
x−4000−∆x0

W−

)
if x ≤ 3800,

cosh−2
(
x−7500
W+

)
− W+

W− cosh−2
(
x−7500−∆x0

W−

)
otherwise,

(15)
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Table 4: Parameters for Tests 9–11 (15).

Test ρ0 δL δU

9 0.25ρmax 0.3 0.2

10 0.25ρmax 0.1 0

11 0.7ρmax -0.1 -0.2

Figure 21: §4.5: Initial conditions for Tests 9 and 10 (top row) and Test 11 (bottom row).

subject to the periodic boundary conditions in the computational domain [0, 7600].
Here, ρ0 is the initially homogeneous density, ∆ρ is the amplitude of perturbation, ∆x0,W

−, andW+ are
spatial distances satisfying ∆x0 =W−+W+. In all numerical investigations, we set these asW+ = 201.25m,
W− = 805m and ∆ρ = 5 (veh/km).

In general, the scenarios of the form (15) are commonly used for examining how the model handles
the emergence and spread of traffic instabilities starting from a uniformly stable traffic condition. In our
examples, we specifically choose these test cases as they facilitate the creation of bumps and deep troughs in
the density profiles, making them ideal for evaluating the relative effectiveness of the 2-Order and 5-Order
Schemes. Our primary focus is, however, on stable traffic conditions, where achieving convergence is feasible,
and thus, meaningful comparison can be made across the numerical results obtained by the 2-Order and
5-Order Schemes, as well as against the reference solutions.

We design several numerical tests as in Table 4 to investigate the performance of the proposed PCCU
schemes under various stability conditions of NET-RAT (see [23] for more discussions on the stability criteria
of the NET-RAT model). The initial conditions for these test cases are illustrated in Figure 21.

We compute the numerical solutions until either time t = 500 s (Test 9) or t = 9000 s (Tests 10 and 11)
by both the 2-Order and 5-Order Schemes on 200 uniform cells and present the obtained results in Figures
22–24 together with the corresponding reference solution computed by the 2-Order Scheme on a much finer
mesh with 4000 uniform cells.

The developed PCCU schemes effectively capture the solution structures in a non-oscillatory manner,
with the 5-Order Scheme showing a marked improvement in resolution over the 2-Order Scheme.
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Figure 22: §4.5, Test 9: Density (left) and speed (right) computed by the 2-Order and 5-Order Schemes.

Figure 23: §4.5, Test 10: Same as in Figure 22.

Figure 24: §4.5, Test 11: Same as in Figure 22.

5. Conclusion

Non-equilibrium (“second-order”) hyperbolic traffic models can be obtained through continuum approxi-
mations of car-following models. However, the incorporation of complex human factors in these car-following
models can cause the resulting hyperbolic traffic model to lose its conservative property. Consequently, ob-
taining numerical solutions near discontinuities becomes challenging due to the presence of non-conservative
product terms.

This issue is also pertinent to the recently developed behavioral NET-RAT model, as presented in [23].
In this model, drivers’ perception of risk is incorporated based on car-following information, impacting their
sensitivity to changes in the traffic conditions ahead. The interaction between drivers’ response to the
perceived risk is modeled using the well-known risk allostasis theory [7].

In order to overcome numerical difficulties, we have introduced the path-conservative approach and devel-
oped second-order path-conservative central-upwind (PCCU) scheme. We have also extended the proposed
PCCU scheme to the fifth-order of accuracy using the alternative weighted essentially non-oscillatory (A-
WENO) framework to obtain the A-WENO PCCU scheme. The proposed schemes have been applied to
multiple test cases with strong shocks and intermediate states emerging between initial discontinuities on
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both sides. For each test case, we compare the performance of the proposed fifth- and second-order PCCU
schemes.

Initially, we have studied the proposed PCCU schemes on the NET-RAT model without the relaxation
term, focusing solely on the characteristic speed-induced waves. The numerical results demonstrate that the
fifth-order A-WENO PCCU scheme captures the overall solution structures and different types of waves, such
as shocks, rarefactions, and contact discontinuities, significantly better than the second-order PCCU scheme.

In the next step, we have incorporated the relaxation term into the model and conducted simulations
for all of the test cases using the proposed PCCU schemes. The results showed that the presence of the
relaxation term leads to the dissipation of the multi-fold waves arising from the discontinuities. Despite this,
the proposed fifth-order A-WENO PCCU scheme still showed significant improvements over its second-order
counterpart in terms of prediction accuracy.

The NET-RAT model has the potential to more accurately and reliably predict traffic states, if it is
rigorously calibrated and validated on real-world traffic scenarios. Such work is currently ongoing.
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